Алгебра

Куда движется солнечная система. Куда мы движемся? Перемещение относительно ближних звезд

Куда движется солнечная система. Куда мы движемся? Перемещение относительно ближних звезд

Звезды в древности считались неподвижными друг относительно друга. Однако в XVIII в. было обнаружено очень медленное перемещение Сириуса по небу. Оно заметно лишь при сравнении точных измерений его положения, сделанных с промежутком времени в десятилетия.

Собственным движением звезды называется ее видимое угловое смещение по небу за один год. Оно выражается долями секунды дуги в год.

Только звезда Барнарда проходит за год дугу в что за 200 лет составит 0,5°, или видимый поперечник Луны. За это звезду Барнарда назвали «летящей». Но если расстояние до звезды неизвестно, то ее собственное движение мало что говорит об ее истинной скорости.

Например, пути, пройденные звездами за год (рис. 98), могут быть разные: а соответствующие им собственные движения одинаковые.

2. Компоненты пространственной скорости звезд.

Скорость звезды в пространстве можно представить как векторную сумму двух компонент, один из которых направлен вдоль луча зрения, другой перпендикулярен ему. Первый компонент представляет собой лучевую, второй - тангенциальную скорость. Собственное движение звезды определяется лишь ее тангенциальной скоростью и не зависит от лучевой. Чтобы вычислить тангенциальную скорость в километрах в секунду, надо выраженное в радианах в год, умножить на расстояние до звезды выраженное в километрах,

Рис. 98. Собственное движение лучевая тангенциальная и полная пространственная скорость звезды .

Рис. 99. Изменение видимого расположения ярких звезд созвездия Большой Медведицы вследствие их собственных движений: сверху - 50 тыс. лет назад; в середине - в настоящее время; внизу - через 50 тыс. лет.

и разделить на число секунд в году. Но так как на практике всегда определяется в секундах дуги, в парсеках, то для вычисления в километрах в секунду получается формула:

Если определена по спектру и лучевая скорость звезды то пространственная скорость ее V будет равна:

Скорости звезд относительно Солнца (или Земли) обычно составляют десятки километров в секунду.

Собственные движения звезд определяют, сравнивая фотографии выбранного участка неба, сделанные на одном и том же телескопе через промежуток времени, измеряемый годами или даже десятилетиями. Из-за того, что звезда движется, ее положение на фоне более далеких звезд за это время немного изменяется. Смещение звезды на фотографиях измеряют с помощью специальных микроскопов. Такое смещение удается оценить лишь для сравнительно близких звезд.

В отличие от тангенциальной скорости лучевую скорость можно измерить, даже если звезда очень далека, но яркость ее достаточна для получения спектрограммы.

Звезды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звезд (рис. 99).

3. Движение Солнечной системы.

В начале XIX в. В. Гершель

установил по собственным движениям немногих близких звезд, что по отношению к ним Солнечная система движется в направлении созвездий Лиры и Геркулеса. Направление, в котором движется Солнечная система, называется апексом движения. Впоследствии, когда стали определять по спектрам лучевые скорости звезд, вывод Гершеля подтвердился. В направлении апекса звезды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении с такой же скоростью в среднем удаляются от нас.

Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20 км/с по отношению к соседним звездам Задавать вопрос о том, когда мы долетим до созвездия Лиры, бессмысленно, так как созвездие не является пространственно ограниченным образованием. Одни звезды, которые сейчас мы относим к созвездию Лиры, мы минуем раньше (на огромном от них расстоянии), другие будут всегда оставаться практически так же далеки от нас, как и сейчас.

(см. скан)

4. Если звезда (см. задачу 1) приближается к нам со скоростью 100 км/с, то как изменится ее яркость за 100 лет?

4. Вращение Галактики.

Все звезды Галактики обращаются вокруг ее центра. Угловая скорость обращения звезд во внутренней области Галактики (почти до Солнца) примерно одинакова, а внешние ее части вращаются медленнее. Этим обращение звезд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лат со скоростью 250 км/с.

12 февраля 2018 в 06:59

Как движется Солнечная система

  • Научно-популярное ,
  • Астрономия

Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение Солнечной системы.

Ролик , вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости орбит планет направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости Галактики. Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

Проверяем ученых

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

Но сама по себе цифра скучна, да и сейчас, когда на обочине науки адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики - это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть - это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). «Туловище» Лебедя примерно совпадает с галактической плоскостью.

Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика - это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

А гифку правильнее рисовать так:


Источник: сайт астронома Rhys Taylor rhysy.net

Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

Но этот факт, увы, «на пальцах» не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

Разбегающиеся звезды

Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

На гифке показано перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.


Источник: Hoskin, M. Herschel"s Determination of the Solar Apex, Journal for the History of Astronomy, Vol. 11, P. 153, 1980

А с данными каталога Лаланда область удалось серьезно уменьшить.


Оттуда же

Дальше пошла нормальная научная работа - уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

Еще дальше

Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной - произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

Космический хвост

А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его

Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение Солнечной системы.

Ролик , вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости орбит планет направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости Галактики. Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

Проверяем ученых

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

Но сама по себе цифра скучна, да и сейчас, когда на обочине науки адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики - это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть - это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). "Туловище" Лебедя примерно совпадает с галактической плоскостью.

Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика - это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

А гифку правильнее рисовать так:


Источник: сайт астронома Rhys Taylor rhysy.net

Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

Но этот факт, увы, "на пальцах" не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

Разбегающиеся звезды

Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

На гифке показано перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.


Источник: Hoskin, M. Herschel"s Determination of the Solar Apex, Journal for the History of Astronomy, Vol. 11, P. 153, 1980

А с данными каталога Лаланда область удалось серьезно уменьшить.


Оттуда же

Дальше пошла нормальная научная работа - уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

Еще дальше

Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной - произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

Космический хвост

А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его данным хвост есть.


Иллюстрация NASA

Для других звезд мы можем видеть астросферы (пузыри звездного ветра) непосредственно.


Фото NASA

Позитив напоследок

Завершая разговор, стоит отметить очень позитивную историю. Создавший в 2012 году исходное видео DJSadhu первоначально продвигал что-то ненаучное. Но, благодаря вирусному распространению клипа, он пообщался с настоящими астрономами (астрофизик Rhys Tailor очень позитивно отзывается о диалоге) и, спустя три года, сделал новый, гораздо более соответствующий реальности ролик без антинаучных построений. Главная > Документ

Движение звезд и солнечной системы

Георгий А. Хохлов

Россия, Санкт-Петербург

Март 14, 2009

Ещё итальянский философ Дж. Бруно (1548-1600), отож-дествляя физическую природу Солнца и звёзд, утверждал, что все они движутся в беспре-дельном пространстве. Вслед-ствие этого движения видимые положения звезд на небе посте-пенно изменяются. Однако из-за колоссального удаления звезд эти изменения настолько малы, что даже у наиболее близких звезд могут быть обна-ружены невооруженным глазом лишь через тысячи и десятки тысяч лет. Но, как известно, такими возможностями ни один человек не обладает. Поэтому единственный способ обнару-жения смещения звезд на не-бе - это сравнение их видимых положений, разделенных боль-шими интервалами времени. Впервые такое сравнение положений ярких звезд провел в 1718 г. английский астроном Э. Галлей по двум звездным каталогам (спискам звёзд). Первый каталог был составлен еще во второй половине II в. до н. э. выдающимся древнегреческим астрономом Гиппархом Родосским (этот каталог содержится в знаме-нитом «Большом сочинении» александрийского астронома К- Птолемея, созданном им около 140 г. н. э. и более известном в латинском пере-воде под названием «Альма-гест») . Второй каталог был составлен в 1676-1710 гг. директором Гринвичской обсер-ватории Дж. Флемстидом (1646-1719). Галлей установил, что почти за 2000 лет, разделяющих оба каталога, звезды Сириус (а Большого Пса) и Процион (а Малого Пса) сместились примерно на 0,7°, а Арктур (а Волопаса) более чем на 1°. Такие большие смещения, пре-вышающие видимый диаметр Луны (0,5°), не оставляли сомнения в пространственном движении звезд. В настоящее время соб-ственные движения звезд изу-чаются по фотографиям звезд-ного неба, полученным с ин-тервалом времени в несколько десятков лет, начало и конец которого именуются эпохами наблюдений. Полученные не-гативы совмещают, т.е. накладывают друг на друга, и тогда на них сразу выявляются сместившиеся звезды. Эти сме-щения измеряют с точностью до 1 мкм и по масштабу негатива переводят в угловые секунды. Хотя наблюдения проводят с Земли, но в конечном итоге всегда вычисляют простран-ственную скорость звёзд отно-сительно Солнца. Пусть в не-который день года t1 (первая эпоха наблюдений) звезда N 1 видна на небе в точке n 1 . Она находится от Солнца на расстоянии r и движется от-носительно него в пространстве со скоростью V (см. рисунок). Проекция пространственной скорости V на луч зрения r представляет собой лучевую скорость V r звезды, а перпен-дикулярная к ней проекция Vt называется тангенциальной скоростью. Через несколько де-сятков лет, ко второй эпохе наблюдений t 2 , звезда пере-местится в пространстве в точку N 2 и будет видна на небе в точке n 2 , т. е. за разность эпох (t 2 -t 1 ) звезда сместится по небу на дугу n 1 n 2 , видимую с Земли под малым углом σ, который из-меряется на совмещённых не-гативах. Из-за колоссального удаления звёзд точно такое же смещение σ будет и относи-тельно Солнца. Видимое смещение звезды на небе за 1 год

Называется собственным дви-жением звезды и выражается в угловых секундах в год ("/год). (В программах-планетариях, астрономических календа-рях и справочниках указыва-ются только угловые секунды дуги, а единица знаменателя подразу-мевается, о чём нужно твёрдо помнить.) За разность эпох наблю-дений (t 2 -t 1 ) звезда в направ-лении тангенциальной скорости пройдёт в пространстве путь

s = V t (t 2 -t 1 ) = r tgσ. (2)

Из-за малости угла σ , выра-жаемого в угловых секундах,

Тогда с учётом формулы (1)

Но расстояния r до звёзд выражают в парсеках (пк), a µ- в угловых секундах в год ("/год). Нам необходимо знать V t , в километрах в секунду (км/с). Помня, что 1 пк = = 206265 а. е. =206 265 1,49610 8 км, а 1 год содер-жит 3,15610 7 с, найдём

Vt = 2062651,49610 7 км r

Vt = 4.74 µ r км/с (3)

Причём в этой формуле r выражено в парсеках. Но расстояния r до звёзд вычисляются по их измеренным годичным параллаксам π (Годичный параллакс - угол, под которым виден средний радиус Земной орбиты из центра масс звезды, если направление на звезду перпендикулярно радиусу земной орбиты), по простой формуле
Поэтому тангенциальная скорость звезды в километрах в секунду равна

Где µ и π - выражены в секундах дуги. Лучевая скорость звёзд оп-ределяется по смещению ли-ний в их спектрах. Найденная по спектрограммам лучевая скорость звёзд являет-ся скоростью относительно Земли и включает в себя её орбитальную скорость, направ-ление которой из-за движения вокруг Солнца непрерывно ме-няется (за полгода - на 180°). Из-за этого на протяже-нии года лучевая скорость звёзд испытывает периодичес-кие изменения в определённых пределах (это тоже служит одним из доказательств об-ращения Земли вокруг Солн-ца). Поэтому в найденные по спектрограммам лучевые ско-рости вносят поправки, учиты-вающие значение и направле-ние скорости Земли в дни фотографирования спектров, и по ним вычисляют лучевую скорость звезды V r относитель-но Солнца. Тогда простран-ственная скорость звезды, называемая ещё гелиоцентри-ческой скоростью

(5),

Направление которой опреде-ляется углом θ относительно направления на Солнце, так что

(6)

При удалении звезды от Солнца её лучевая скорость V r > 0, а при приближении V r < 0. Новой эпохой в определении собственного движения звёзд стал полёт спутника Hipparcos (HI gh P recision PAR arallax CO llecting S atellite), который за 37 месяцев работы провёл миллионы измерений звёзд. В результате работы получилось два звёздных каталога. Каталог HIPPARCOS содержит измеренные с ошибкой порядка одной тысячной угловой секунды координаты, собственные движения и параллаксы для 118 218 звёзд. Такая точность для звёзд достигнута в астрометрии впервые. Во второй каталог - TYCHO приводятся несколько менее точные сведения для 1 058 332 звёзд. К настоящему времени соб-ственные движения определены более чем у 1 млн. звёзд, причём более 20 000 измерений выполнено астрономами Пул-ковской и Ташкентской об-серваторий. Лучевые скорости известны примерно у 40 000 звёзд. Собственные движения по-давляющего большинства звёзд исчисляются десятыми и соты-ми долями угловой секунды и лишь у очень близких звёзд превосходят 1". Так, самое высокое значение собственного движения имеет «летящая» Звезда Барнарда - 10.358″. Вторую и третью строчку в рейтинге самых быстро перемещающихся звёзд на небесной сфере занимают Звезда Каптейна (8.670″/год) и Лакайль 9352 (6.896″/год). В виде примера найдём расстояние, параллакс, собственное движение, компоненты скорости и блеск Сириуса в эпоху его наибольшего сближения с Солнцем. Необходимые для этого сведения возьмём из «Атласа звёздного неба 2000.0»: в нашу эпоху у Сириуса блеск -1,46 m , годичный параллакс 0,379", собствен-ное движение 1,34" и лучевая скорость V r = -8 км/с. Прежде всего найдём тангенциальную скорость Сириуса

Его пространственную скорость

И его направление через

Откуда θ = -64,5º, что говорит о сближении Сириуса с Солнцем (поло-жительный знак угла означал бы удаление). Тогда абсолютные значения cos θ = 0,431 и sin θ =sin 64,5°=0,902. Теперь построим чертёж (см. рисунок), показывающий направление простран-ственного движения звезды (S), и на это направление опустим из изображения Солнца перпендикуляр, который укажет положение звезды (S 1) и ее расстояние (r 1) от Солнца в эпоху наибольшего сближения. К этой эпохе звезда пройдёт в пространстве путь и т. к. её нынешнее расстояние то этот путь она пройдёт за Через этот длинный промежуток времени Сириус пройдёт мимо Солнца на расстоянии его годичный параллакс будет
лучевая скорость Vr, =0 (направление пространственной скорости V перпенди-кулярно лучу зрения r 1), тангенциальная скорость V t ,= V =18.6 км/с и собствен-ное движение
Поскольку блеск обратно пропорционален квадрату расстояния, то блеск Сириуса возрастёт в и, согласно формуле Погсона будет равен . Такие задачи на сближение с Солнцем или на удаление от него можно решать для всех звёзд с известными исходными данными, которые можно взять из звёздных каталогов или из справочных пособий. Исследуя движения близких звёзд относительно солнца, мы можем найти звёзды, которые могли испытать в прошлом или, возможно, испытают в будущем сближение с Солнечной системой в пределах внешнего облака Оорта, то есть с минимальным расстоянием r min от Солнца менее 206265 астрономических единиц (1 парсека). Данные о таких звёздах представлены в таблице ниже. В таблице приведены номер звезды по каталогу Глизе и Ярайса, название звезды, её спектральный тип, масса, минимальное расстояние между Солнцем и звездой, момент времени сближения по отношению к современной эпохе. Заметим, что из семи приведённых звёзд шесть испытают сближение с Солнечной системой в будущем и лишь одна звезда - в прошлом (около 500000 лет тому назад). Интересно, что четыре сближения произойдут в течение ближайших 50000 лет. Эти сближения могут вызвать обильные кометные ливни из внешней части облака Оорта в пределы планетной системы, что, в свою очередь, увеличивает вероятность столкновения с кометным ядром. Таким образом, кометные ливни могут приводить к экологическим катастрофам и массовым вымираниям организмов.

Звёзды, сближающиеся с Солнцем

Название

Спектральный

t min , годы

Изучив собственные движе-ния звёзд какого-либо созвез-дия, можно представить себе его вид в далёком прошлом и будущем. В частности, изменение вида созвездия Большой Медведицы показано на рисун-ке слева: а – 100 тыс. лет назад, б – наши дни, в – через 100 тыс. лет. Изучение собственных дви-жений звёзд помогло обнару-жить движение Солнечной системы в пространстве. Впер-вые эту задачу решил В. Гершель в 1783 г., использовав собственные движения всего лишь 7 звёзд, а несколько позже-13 звёзд. Он нашёл, что Солнце вместе со всем множеством тел, обращающих-ся вокруг него, движется в направлении к звезде λ Гер-кулеса (4,5 m). Точку неба, в направлении которой проис-ходит это движение, Гершель назвал солнечным апексом (от лат. apex - вершина). В дальнейшем астрономы неоднократно определяли по-ложение солнечного апекса по большому числу звёзд с из-вестными собственными дви-жениями. При этом они осно-вывались на том, что если бы Солнечная система покоилась в пространстве, то собственные движения звёзд во всех облас-тях неба имели бы самые раз-личные направления. В дейст-вительности же в области со-звездий Лиры и Геркулеса собственные движения боль-шинства звёзд направлены так, что создается впечатление, буд-то звезды разбегаются в раз-ные стороны. В диаметрально противоположной области неба, в созвездиях Большого Пса, Зайца и Голубя собственные движения большинства звёзд направлены примерно друг к другу, т. е. звёзды как бы сближаются между собой. Эти явления объяснимы лишь движением Солнечной системы в пространстве в направлении к созвездиям Лиры и Геркулеса. Действительно, каждый наблю-дал, что во время движения окружающие предметы, види-мые в направлении движения, как бы расступаются перед нами, а находящиеся позади - смыкаются. В 20-х годах XX столе-тия началось массовое вы-числение лучевых скоростей звёзд относительно Солнца. Это дало возможность не только определить положение солнечного апекса, но и узнать скорость движения Солнечной системы в пространстве. Круп-ные исследования в этом на-правлении были проведены в 1923-1936 гг. в астрономи-ческих обсерваториях несколь-ких стран, в том числе в 1923- 1925 гг. московскими астро-номами под руководством В. Г. Фесенкова. Исследова-ния показали, что у большин-ства звёзд, расположенных вблизи солнечного апекса, лу-чевая скорость близка к -20 км/с, т. е. эти звёзды приближаются к Солнцу, а звёзды, находящиеся в про-тивоположной области неба, удаляются от Солнца со ско-ростью около +20 км/с. Со-вершенно очевидно, что эта скорость свойственна самой Солнечной системе. В настоящее время установлено, что Солнечная система движется относительно окружающих её звёзд со скоростью около 20 км/с (по другим данным 25 км/с) в направлении к солнечному апексу, расположенному вблизи слабой звезды ν Геркулеса (m=4,5) недалеко от границы этого созвездия с созвездием Лиры. При этом Солнечная система ещё обращается вокруг центра Галактики с периодом 226 млн лет и со скоростью 260 км/с.Экваториальные коор-динаты солнечного апекса: прямое восхождение α А =270° (18 ч 00 м) и склонение δ А = = +30°. Собственные движения по-могают установить у некото-рых звёзд наличие планет. Смещение одиночных звёзд происходит, как иногда гово-рят, по «прямой линии» (на самом деле - по дуге боль-шого круга, незначительную часть которой часто принима-ют за отрезок прямой). Но если вокруг звезды обращается сравнительно массивный спутник, то он периодически отклоняет ее движение пооче-редно в обе стороны от дуги большого круга и тогда види-мое смещение звезды происхо-дит по слегка волнистой линии (рис.). В 1844 г. немецкий астро-ном Ф. Бессель (1784-1846) обнаружил такие отклонения в смещениях Сириуса и Проциона и предсказал существо-вание у них невидимых мас-сивных спутников. А почти через 18 лет, 31 января 1862 г., американский оптик А. Кларк, испытывая изготовленный им линзовый объектив диаметром 46 см, обнаружил спутник Сириуса - звезду 8,4 m , отсто-ящую от главной звезды на 7,6". В 1896 г. Дж. Шеберле открыл в 4,6" от Проциона его спутник - звезду 10,8 m . Оба спутника, как выяснилось впос-ледствии, оказались белыми карликами. Невидимые спутники-планеты имеют-ся и у Летящей звезды Бар-нарда, но они пока не откры-ты. Всего сейчас известно более 300 звёзд, во-круг которых обращаются планетоподобные спутники. Литература:

  • Тема. Малые тела Солнечной системы

    Краткое содержание

    Понятия: малые тела Солнечной системы, астероиды, астероидные тела, метеоры, метеориты, кометы, карликовые планеты, пояс Койпера, главный пояс астероидов, облако Орта, метеороидные тела.

  • Проект «Земля планета солнечной системы»

    Документ

    во льдах(Многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима).

  • Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение Солнечной системы.

    Ролик , вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости орбит планет направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости Галактики. Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

    Проверяем ученых

    Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

    Но сама по себе цифра скучна, да и сейчас, когда на обочине науки устраивают шабаш адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики - это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть - это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). «Туловище» Лебедя примерно совпадает с галактической плоскостью.

    Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика - это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

    В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

    Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

    А гифку правильнее рисовать так:


    Источник: сайт астронома Rhys Taylor rhysy.net

    Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

    Но этот факт, увы, «на пальцах» не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

    Разбегающиеся звезды

    Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

    На гифке показано перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.


    Источник: Hoskin, M. Herschel"s Determination of the Solar Apex, Journal for the History of Astronomy, Vol. 11, P. 153, 1980

    А с данными каталога Лаланда область удалось серьезно уменьшить.


    Оттуда же

    Дальше пошла нормальная научная работа - уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

    Еще дальше

    Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной - произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

    Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

    Космический хвост

    А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его