Физика

Центр тяжести твердого тела. Способы нахождения центра тяжести. Центр тяжести твердого тела и способы нахождения его положения В результате изучения темы студент должен

Центр тяжести твердого тела. Способы нахождения центра тяжести. Центр тяжести твердого тела и способы нахождения его положения В результате изучения темы студент должен

Если твердое тело находится вблизи поверхности Земли, то к каждой материальной точке этого тела приложена сила тяжести. При этом размеры тела по сравнению с размером Земли настолько малы, что силы земного притяжения, действующие на все частицы тела, можно считать параллельными между собой

Центр (точка С ) системы параллельных сил тяжести всех точек тела называется центром тяжести твердого тела , а сумма сил тяжести всех его материальных точек называется силой тяжести , действующей на него

Координаты центра тяжести твердого тела определяются по формулам:

где - координаты точек приложения сил тяжести , действующих на k -ю материальную точку.

Для однородного тела:

где V - объем всего тела;

V k - объем k -й частицы.

Для однородной тонкой пластины:

где S – площадь пластины;

S k – площадь k- ой части пластины.

Для линии:

где L - длина всей линии;

L k - длина k -ой части линии.

Способы определения координат центров тяжести тел:

Теоретические

Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси, или в центре симметрии.

Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по выше приведенным формулам.

Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. В расчеты их включают со знаком «-».

Интегрирование . Когда тело нельзя разбить на составные части, центры тяжести которых известны, используют метод интегрирования, являющийся универсальным.

Экспериментальные

Метод подвешивания. Тело подвешивают за две-три точки, проводя из них вертикали. Точка их пересечении – центр масс.

Метод взвешивания . Тело разными частями помещают на весы, определяя тем самым опорные реакции. Составляют уравнения равновесия, из которых определяют координаты центра тяжести.

С помощью теоретических методов выведены формулы для определения координат центра тяжести наиболее распространенных однородных тел:

Дуга окружности

Первым открытием Архимеда в механике было введение понятия центра тяжести, т.е. доказательство того, что в любом теле есть единственная точка, в которой можно сосредоточить его вес, не нарушив равновесного состояния.

Центр тяжести тела – точка твердого тела, через которую проходит равнодействующая всех сил тяжести, действующих на элементарные массы этого тела при любом его положении в пространстве.

Центром тяжестимеханической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на все тела системы, равен нулю.

Проще говоря, центр тяжести – это точка, к которой приложена сила тяжести независимо от положения самого тела. Если тело однородное, центр тяжести обычно расположен в геометрическом центре тела. Таким образом, центр тяжести в однородном кубе или однородном шаре совпадает с геометрическим центром этих тел.

Если размеры тела малы по сравнению с радиусом Земли, то можно считать, что силы тяжести всех частиц тела образуют систему параллельных сил. Их равнодействующая называется силой тяжести , а центр этих параллельных сил – центром тяжести тела .

Координаты центра тяжести тела могут быть определены по формулам (рис. 7.1):

, , ,

где – вес телаx i , y i , z i – координаты элементарной частицы, весом Р i ;.

Формулы для определения координат центра тяжести тела являются точными, строго говоря, лишь при раз­биении тело на бесконечное число бесконечно малых элементарных частиц весом Р i . Если же число частиц, на которые мысленно разбито тело, конечное, то в общем случае эти формулы будут приближенными, так как координаты x i , y i , z i при этом мо­гут быть определены лишь с точностью до размеров частиц. Чем меньше эти частицы, тем меньше будет ошибка, которую мы сделаем при вычислении ко­ординат центра тяжести. К точным выражениям можно прийти лишь в ре­зуль­тате предельного перехода, когда размер каждой частицы стремится к нулю, а число их неограниченно возрастает. Как известно, такой предел называется оп­ределенным интегралом. Поэтому фактическое определение координат центров тяжести тел в общем случае тре­бует замены сумм соответствующими им интегралами и применения методов интегрального исчисления.

Если масса внутри твердого тела или механической системы распределяется неоднородно, то центр тяжести смещается в ту часть, где оно тяжелее.

Центр тяжести тела не всегда даже может находиться внутри самого тела. Так, например, центр тяжести бумеранга находится где-то посередине между оконечностей бумеранга, но вне самого тела бумеранга.

Для крепления грузов положение центра тяжести очень важно. Именно в эту точку приложены силы тяжести и инерционные силы, действующие на груз в процессе движения. Чем выше находится центр тяжести тела или механической системы, тем более оно склонно к опрокидыванию.

Центр тяжести тела совпадает с центром масс.

Выделим в неоднородном твердом теле элементарный объем dV=dx dy dz (рис.5.3). Вес выделенного элемента будет , где – удельный вес в точке тела с соответствующими координатами.

Веса элементов образуют систему сил, параллельных оси аппликат. Модуль равнодействующей

весов элементов называется весом твердого тела, а геометрическая точка приложения равнодействующей – центром тяжести твердого тела. Для вычисления этих величин воспользуемся формулами (5.1) и (5.4), заменив в них суммирование интегрированием по объему, то есть

Величина, стоящая в числителе формулы (5.8), называется статическим моментом веса твердого тела относительно координатной плоскости .

Очевидно, что для однородного тела формула (5.8) принимает вид

Структура формул для вычисления и аналогичная.

В этом случае центр тяжести твердого тела совпадает центром его объема.

Если один из размеров твердого тела существенно меньше двух других, тело называют тяжелой поверхностью . При неизменном весе единицы площади поверхности она является однородной. Формулы для вычисления веса и координат центра тяжести получаются из (5.7) – (5.9) заменой интегралов по объему на интегралы по поверхности. В некоторых случаях поверхность может быть плоской.

Если два размера твердого тела существенно меньше третьего, тело называют тяжелой линией . При неизменном весе единицы длины линии она является однородной. Формулы для вычисления веса и координат центра тяжести получаются из (5.7) – (5.9) заменой интегралов по объему на криволинейные интегралы. В некоторых случаях линия может быть прямой.

Если однородное твердое тело имеет плоскость симметрии, то центр тяжести тела лежит в этой плоскости (сумма статических моментов элементарных сил веса относительно плоскости симметрии равна нулю).

Если однородное твердое тело имеет две плоскости симметрии, то центр тяжести тела принадлежит линии пересечения этих плоскостей.

Если однородное твердое тело имеет три плоскости симметрии, то центр тяжести тела расположен в точке их пересечения.

Если твердое тело может быть мысленно расчленено на элементы, веса и положения центров тяжести которых известны, то вычисление веса твердого тела и положения его центра тяжести может быть выполнено по формулам (5.1) и (5.4). Так, например, рассчитываются вес и координаты центра тяжести строящегося судна.

Если тело имеет вырезы, то они могут быть учтены как элементы отрицательного веса.

Заметим, что в инженерной справочной литературе приводится достаточно большое количество однородных элементов (объемных, плоских и криволинейных), для которых рассчитаны веса и положения центров тяжести. Ниже в таблице приведены некоторые из них.



Вид элемента Объем (площадь) элемента Абсцисса ц.т. Ордината ц.т. Аппликата ц.т.

В некоторых ситуациях положение центра тяжести твердого тела может быть найдено по результатам эксперимента. Например, при подвешивании тела на нити, его центр тяжести располагается на линии нити. Подвесив тело за другую точку, не лежащую на первой линии, найдем положение центра тяжести тела как точку пересечения двух линий. Другим способом, применяемым для нахождения центра тяжести протяженных тел, является так называемая постановка его на «ножи» с параллельными лезвиями. При сближении «ножей» центр тяжести тела стремится остаться между ними и, в пределе, оказывается на линии совпадения лезвий.

В инженерной практике для определения положения центра тяжести тела могут применяться способы, являющиеся комбинацией расчета и эксперимента. В качестве примера приведем вычисление удаления центра тяжести самолета, изображенного на рис.5.4., от его переднего колеса.

На рисунке: Д- динамометр, показывающий величину силы нормального давления переднего колеса, P – вес самолета, – расстояние от переднего колеса до оси задних колес.

Очевидно, что интересующее расстояние от переднего колеса до линии силы веса самолета может быть получено из уравнения суммы моментов сил и P относительно оси задних колес, как

Замечание: если вес Р самолета не известен, то, переставив динамометр Д под задние колеса, можно получить величину силы нормального давления . Тогда

Пример 5.1. Для однородной пластины, имеющей форму кругового сектора с углом 2 при вершине (см. рис. 5.5), найти положение центра тяжести пластины.

Проведем ось абсцисс так, что бы она являлась биссектрисой угла 2 . Тогда, в силу симметрии, ордината центра тяжести равна нулю, т.е. .

Двумя радиусами, элементарный угол между которыми , выделим на пластине элемент, площадь которого приближенно равна площади равнобедренного треугольника

Абсцисса центра тяжести выделенного треугольного элемента равна .

Теперь можно составить выражение для вычисления абсциссы центра тяжести кругового сектора как

Замечание: при вычислении учтено, что центр тяжести однородного плоского тела имеет на плоскости те же координаты, что и у соответствующей плоской фигуры.

Пример 5.2. Для тонкой однородной пластины сложной формы, размеры которой указаны на рис.5.6, найти положение центра тяжести.

Мысленно расчленим пластину на три элемента: прямоугольник, треугольник и круг. Для каждого из элементов найдем площадь и координаты центра тяжести:

Тогда для пластины координаты центра тяжести можно вычислить по формулам:

При вычислении отверстие трактовалось как присоединение круга отрицательного веса.

Тема относительно проста для усвоения, однако крайне важна при изучении курса сопротивления материалов. Главное внимание здесь необходимо обратить на решение задач как с плоскими и геометрическими фигурами, так и со стандартными прокатными профилями.

Вопросы для самоконтроля

1. Что такое центр параллельных сил?

Центр параллельных сил есть точка, че­рез которую проходит линия равнодействую­щей системы параллельных сил, прило­женных в заданных точках, при любом изменении на­правления этих сил в простран­стве.

2. Как найти координаты центра параллельных сил?

Для определения координат центра параллельных сил воспользуемся теоремой Вариньона.

Относительно оси x

M x (R) = ΣM x (F k) , - y C R = Σy kFk и y C = Σy kFk /Σ Fk .

Относительно оси y

M y (R) = ΣM y (F k) , - x C R = Σx kFk и x C = Σx kFk /Σ Fk .

Чтобы определить координату z C , повернем все силы на 90° так, чтобы они стали параллельны оси y (рисунок 1.5, б). Тогда

M z (R) = ΣM z (F k) , - z C R = Σz kFk и z C = Σz kFk /Σ Fk .

Следовательно, формула для определения радиус-вектора центра параллельных сил принимает вид

r C = Σr kFk /Σ Fk .

3. Что такое центр тяжести тела?

Центр Тяжести- неизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела. Положение центра тяжести твердого тела совпадает с положением его центра масс.

4. Как найти центр тяжести прямоугольника, треугольника, круга?

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольногопараллелепипеда.

5. Как найти координаты центра тяжести плоского составного сечения?

Метод разбиения: если плоскую фигуру можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всей фигуры опредляются по формулам:

Х C = ( s k x k) / S; Y C = ( s k y k) / S,

где x k , y k - координаты центров тяжести частей фигуры;

s k - их площади;

S = s k - площадь всей фигуры.

6. Центр тяжести

1. В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

В первом случае для определения центра тяжести достаточно определить одну координату Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1) и C 2 (x 2 , y 2) . Тогда координаты центра тяжести тела равны

Так как центры фигур лежат на оси ординат (х = 0), то находим только координату Ус .

2 Как учитывается площадь отверстия в фигуре 4 в формуле для определения центра тяжести фигуры?

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

иметь представление о центре параллельных сил и его свойствах;

знать формулы для определения координат центра тяжести плоских фигур;

уметь определять координаты центра тяжести плоских фигур простых геометрических фигур и стандартных прокатных профилей.

ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ
Изучив кинематику точки, обратите внимание на то, что прямолинейное движе­ние точки как неравномерное, так и равномерное всегда характеризуется наличием нормального (центростремительного) ускорения. При поступательном движении тела (характеризуемом движением любой его точки) применимы все формулы кинемати­ки точки. Формулы для определения угловых величин тела, вращающегося вокруг неподвижной оси, имеют полную смысловую аналогию с формулами для определе­ния соответствующих линейных величин поступательно движущегося тела.

Тема 1.7. Кинематика точки
При изучении темы обратите внимание на основные понятия кинематики: ускорение, скорость, путь, расстояние.

Вопросы для самоконтроля

1. В чем заключается относительность понятий покоя и движения?

Механическое движение -это изменение движения тела, или (его частей) в пространстве относительно др. тел с течением времени. Полет брошенного камня, вращение колеса- примеры механического движения.

2. Дайте определение основных понятий кинематики: траектории, расстоянию, пути, скорости, ускорению, времени.

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве. Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают). При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с.

Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами - ускорение - это скорость изменения скорости.
Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv, то среднее ускорение за данный промежуток времени составило: а ср = Δv/Δt.

Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному).
Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt, стремящемся к нулю:

а = lim а ср при t→0 или lim Δv/Δt = dv/dt.

Учитывая, что v = ds/dt, получим: а = dv/dt = d 2 s/dt 2 .

Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени. Единица ускорения - метр, деленный на секунду в квадрате (м/с 2).

Траектория - линия в пространстве, вдоль которой движется материальная точка.
Путь - это длина траектории. Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени:

3. Какими способами может быть задан закон движения точки?

1.Естественный способ задания движения точки.

При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении. Чтобы задать закон движения точки естественным способом необходимо:

1) знать траекторию движения;

2) установить начало отсчета на этой кривой;

3) установить положительное направление движения;

4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t) .

2.Векторный способ задания движения точки

В этом случае положение точки на плоскости или в пространстве определяется вектором-функцией. Этот вектор откладывается от неподвижной точки, выбранной за начало отсчета, его конец определяет положение движущейся точки.

3.Координатный способ задания движения точки

В выбранной системе координат задаются координаты движущейся точки как функции от времени. В прямоугольной декартовой системе координат это будут уравнения:

4. Как направлен вектор истинной скорости точки при криволинейном движе­нии?

При неравномерном движении точки модуль ее скорости с течением времени меняется.
Представим себе точку, движение которой задано естественным способом уравнением s = f(t).

Если за небольшой промежуток времени Δt точка прошла путь Δs, то ее средняя скорость равна:

vср = Δs/Δt.

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю:

v = lim v ср при t→0 или v = lim (Δs/Δt) = ds/dt.

Таким образом, числовое значение истинной скорости равно v = ds/dt.
Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v). Из этого следует, что предел вектора условной скорости v п, равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

5. Как направлены касательное и нормальное ускорения точки?

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости.

6. Какое движение совершает точка, если касательное ускорение равно нулю, а нормальное не изменяется с течением времени?

Равномерное криволинейное движение характеризуется тем, что численное значение скорости постоянно (v = const ), скорость меняется лишь по направлению. В этом случае касательное ускорение равно нулю, так как v = const (рис.б),

а нормальное ускорение не равно нулю, так как r - конечная величина.

7. Как выглядят кинематические графики при равномерном и равнопеременном движении?

При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x . Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX . Поэтому перемещение и скорость при прямолинейном движении можно спроецировать на ось OX и рассматривать их проекции как алгебраические величины.

При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.


В результате изучения темы студент должен:

иметь представление о пространстве, времени, траектории; средней и истиной скорости;

знать способы задания движения точки; параметры движения точки по заданной траектории.