Разработки

Книга: Уравнение линии на плоскости. Линии на плоскости и их уравнения Линия на плоскости определение

Книга: Уравнение линии на плоскости. Линии на плоскости и их уравнения Линия на плоскости определение

Линию на плоскости будем рассматривать как геометрическое место точек M(x, y), удовлетворяющих некоторому условию.

Если в декартовой системе координат записать свойство, которым обладают все точки линии, связав координаты и некоторые константы, можно получить уравнение вида: F(x, y) = 0 или .

Пример. Написать уравнение окружности с центром в точке C(x 0 , y 0) и радиуса R.

Окружность – геометрическое место точек, равноудаленных от точки С. Возьмем точку М с текущими координатами. Тогда |CM| = R или или .

Если центр окружности находится в начале координат, то x 2 + y 2 = R 2 .

Не всякое уравнение вида F(x, y) = 0 определяет линию в указанном смысле: x 2 + y 2 = 0 – точка.

Прямая на плоскости.

Прямые на данной плоскости являются частным случаем прямых в пространстве. Поэтому их уравнения можно получить из соответствующих уравнений прямых в пространстве.

Общее уравнение прямой на плоскости. Уравнение прямой с угловым коэффициентом.

Любую прямую в плоскости XOY можно задать как линию пересечения плоскости Ax + By + Cz + D = 0 с плоскостью XOY: z = 0.

- прямая линия в плоскости XOY: Ax + By + D = 0.

Полученное уравнение называется общим уравнением прямой. В дальнейшем его будем записывать в виде:

Ax + By + C = 0 (1)

1) Пусть , тогда или y = kx + b (2) – уравнение прямой с угловым коэффициентом. выясним геометрический смысл k и b.

Положим x = 0. Тогда y = b – начальная ордината прямой.

Положим y = 0. Тогда ; - угловой коэффициент прямой.

Частные случаи: а) b = 0, y=kx – прямая проходит через начало координат; б) k = 0, y = b – прямая параллельна оси ОХ; b) если B = 0, то Ax + C = 0, ,

Это - геометрическое место точек с постоянными абсциссами, равными a, т.е. прямая перпендикулярна оси ОХ.

Уравнение прямой в отрезках.

Пусть дано общее уравнение прямой: Ax + By + C = 0, причем . Разделим обе его части на –C:

или (3),

где ; . Это уравнение прямой в отрезках. Числа a и b – величины отрезков, отсекаемых на осях координат.

Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.



Пусть дана точка M 0 (x 0 , y 0), лежащая на прямой L и угловой коэффициент k. Запишем уравнение:

Здесь b неизвестно. Найдем его, учитывая, что M 0 L:

y 0 = kx 0 + b (**).

Вычтем почленно из (1) (2):

y – y 0 = k(x – x 0) (4).

Уравнение прямой, проходящей через данную точку в данном направлении.

Уравнение прямой, проходящие через две данные точки.

Пусть даны две точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) L. Запишем уравнение (4) в виде: y – y 1 = k(x – x 1). Т.к. M 2 L, то y 2 – y 1 = k(x 2 – x 1). Поделим почленно:

(5),

Это уравнение имеет смысл, если , . Если x 1 = x 2 , то M 1 (x 1 , y 1) и M 2 (x 1 , y 2). Если у 2 = у 1 , то М 1 (х 1 , у 1); М 2 (х 2 , у 1).

Т.о., если один из знаменателей в (5) обращается в нуль, надо приравнять нулю соответствующий числитель.

Пример. М 1 (3, 1) и М 2 (-1, 4). Написать уравнение прямой, проходящей через эти точки. Найти k.

1. Уравнение линии на плоскости

Как известно, любая точка на плоскости определяется двумя координатами в какойлибо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f (x ) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t. Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

2. Уравнение прямой на плоскости

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ax + By + C = 0 , причем постоянные A , B не равны нулю одновременно, т.е.

A 2 + B 2 ≠ 0 . Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

– прямая проходит через начало координат

C = 0, A ≠ 0, B ≠ 0{ By + C = 0} - прямая параллельна оси Ох

B = 0, A ≠ 0,C ≠ 0{ Ax + C = 0} – прямая параллельна оси Оу

B = C = 0, A ≠ 0 – прямая совпадает с осью Оу

A = C = 0, B ≠ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

3. Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А,В) перпендикулярен прямой, заданной уравнением

Ax + By + C = 0.

Пример. Найти уравнение прямой, проходящей через точку А(1,2) перпендикулярно вектору n (3, − 1) .

Составим при А=3 и В=-1 уравнение прямой: 3x − y + C = 0 . Для нахождения коэффициента

С подставим в полученное выражение координаты заданной точки А. Получаем: 3 − 2 + C = 0 , следовательно С=-1.

Итого: искомое уравнение: 3x − y − 1 = 0 .

4. Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M1 (x1 , y1 , z1 ) и M2 (x2, y2 , z2 ), тогда уравнение прямой,

проходящей через эти точки:

x − x1

y − y1

z − z1

− x

− y

− z

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается: y − y 1 = y 2 − y 1 (x − x 1 ) , если x 2 − x 1

x 1 ≠ x 2 и x = x 1 , если x 1 = x 2 .

Дробь y 2 − y 1 = k называется угловым коэффициентом прямой. x 2 − x 1

5. Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой Ax + By + C = 0 привести к виду:

называется уравнением прямой с угловым коэффициентом k .

6. Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор а (α 1 ,α 2 ) , компоненты которого удовлетворяют условию A α 1 + B α 2 = 0 называется направляющим вектором прямой

Ax + By + C = 0 .

Пример. Найти уравнение прямой с направляющим вектором а (1,-1) и проходящей через точку А(1,2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0 . В соответствии с определением, коэффициенты должны удовлетворять условиям: 1A + (− 1) B = 0 , т.е. A = B . Тогда уравнение прямой имеет вид: Ax + Ay + C = 0 , или x + y + C / A = 0 . при х=1, у=2 получаем С/A=-3, т.е. искомое уравнение: x + y − 3 = 0

7. Уравнение прямой в отрезках

Если в общем уравнении прямой Ax + By + C = 0,C ≠ 0 , то, разделив на –С,

получим: −

х−

у = 1 или

1, где a = −

b = −

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

8. Нормальное уравнение прямой

называется нормирующем множителем, то получим x cosϕ + y sinϕ − p = 0 – нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы μ C < 0 .

р – длина перпендикуляра, опущенного из начала координат на прямую, а ϕ - угол, образованный этим перпендикуляром с положительным направлением оси Ох

9. Угол между прямыми на плоскости

Определение. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны, если k 1 = − 1/ k 2 .

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой

Определение. Прямая, проходящая через точку М1 (х1 ,у1 ) и перпендикулярная к прямой y = kx + b представляется уравнением:

y − y = −

(x − x )

10. Расстояние от точки до прямой

Если задана точка М(х0 , у0 ), то расстояние до прямой Ax + By + C = 0

определяется как d =

Ax0 + By0 + C

Пример. Определить угол между прямыми: y = − 3x + 7, y = 2x + 1.

k = − 3, k

2 tg ϕ =

2 − (− 3)

1;ϕ = π / 4.

1− (− 3)2

Пример. Показать,

что прямые 3 x − 5 y + 7 = 0 и 10 x + 6 y − 3 = 0

перпендикулярны.

Находим: k 1 = 3/ 5, k 2 = − 5 / 3, k 1 k 2 = − 1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0 ; 1) , B (6 ; 5) , C (1 2 ; - 1) .

Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны AB :

x − 0

y − 1

y − 1

; 4x = 6 y − 6

6 − 0

5 − 1

2 x − 3 y + 3 = 0; y = 2 3 x + 1.

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + bk = − 3 2 Тогда

y = − 3 2 x + b . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: − 1 = − 3 2 12 + b , откуда b=17. Итого: y = − 3 2 x + 17 .

Ответ: 3x + 2 y − 34 = 0 .

10.1. Основные понятия

Линия на плоскости рассматривается (задается) как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние - R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять по­ложение точки плоскости заданием двух чисел - ее координат, а положе­ние линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x;y) = 0 с двумя переменными, которому удовлетворяют координаты x и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Переменные x и у в уравнении линии называются текущими коорди­натами точек линии.

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка А(x 0 ; у 0) на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбран­ной системе координат.

Задача о нахождении точек пересечения двух линий, заданных урав­нениями F 1 (x 1 ;y 1) = 0 и F 2 (x 2 ;y} = 0, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение F(r; φ)=О называется уравнением данной линии в поляр­ной системе координат, если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где x и у - координаты произвольной точки М(х; у), лежащей на данной линии, а t - переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.

Например, если x = t + 1, у = t 2 , то значению параметра t = 1 соот­ветствует на плоскости точка (3; 4), т. к. x = 1 + 1 = 3, у = 22 - 4.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим , а уравнения (10.1) - параметрическими уравнениями линии.

Чтобы перейти от параметрических уравнений линии к уравнению вида F(x;y) = 0, надо каким-либо способом из двух уравнений исключить параметр t.

Например, от уравнений путем подстановки t = х

во второе уравнение, легко получить уравнение у = х 2 ; или у-х 2 = 0, т. е. вида F(x; у) = 0. Однако, заметим, такой переход не всегда возможен.

Линию на плоскости можно задать векторным уравнением r =r (t) , где t - скалярный переменный параметр. Каждому значению t 0 соответствует определенный вектор r =r (t) плоскости. При изменении параметра t конец вектора r =r (t) опишет некоторую линию (см. рис. 31).

Векторному уравнению линии r =r (t) в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения. I Векторное уравнение и параметрические уравнения I линии имеют механический смысл. Если точка перемеща- I ется на плоскости, то указанные уравнения называются уравнениями дви­жения, а линия - траекторией точки, параметр t при этом есть время. Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.

Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, не­которая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению (х-2) 2 +(у-3 ) 2 =0 соответствует не линия, а точка (2; 3); уравнению х 2 + у 2 + 5 = 0 на плоскости не соответствует никакой геометрический образ).

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение) вторая: зная уравнение кривой, изучить ее форму и свойства.

На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.

10.2. Уравнения прямой на плоскости

Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды её уравнений.

Уравнение прямой с угловым коэффициентом

Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки N(0; b) пересечения с осью Оу и углом a между осью Ох и прямой (см. рис. 41).

Под углом а (0

Из определения тангенса угла следует равенство

Введем обозначение tg a=k , получаем уравнение

(10.2)

которому удовлетворяют координаты любой точки М(х;у) прямой. Мож­но убедиться, что координаты любой точки Р(х;у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.

Число k = tga называется угловым коэффициентом прямой, а уравнение (10.2) - уравнением прямой с угловым коэффициентом.

Если прямая проходит через начало координат, то b = 0 и, следова­тельно, уравнение этой прямой будет иметь вид y=kx .

Если прямая параллельна оси Ох, то a = 0, следовательно, k = tga = 0 и уравнение (10.2) примет вид у = b.

Если прямая параллельна оси Оу, то , уравнение (10.2) теряет смысл, т. к. для нее угловой коэффициент не существует.

В этом случае уравнение прямой будет иметь вид

где a - абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.

Общее уравнение прямой.

Рассмотрим уравнение первой степени относительно x и y в общем виде

(10.4)

где А, В, С - произвольные числа, причем А и В не равны нулю одно­временно.

Покажем, что уравнение (10.4) есть уравнение прямой линии. Возмож­ны два случая.

Если В = 0, то уравнение (10.4) имеет вид Ах + С = О, причем А ¹ 0 т. е. . Это есть уравнение прямой, параллельной оси Оу и проходящей через точку ·

Если B ¹ 0, то из уравнения (10.4) получаем . Это есть уравнение прямой с угловым коэффициентом |.

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой .

Некоторые частные случаи общего уравнения прямой:

1) если А = 0, то уравнение приводится к виду. Это есть уравнение прямой, параллельной оси Ох;

2) если В = 0, то прямая параллельна оси Оу;

3) если С = 0, то получаем . Уравнению удовлетворяют координаты точки O(0;0), прямая проходит через начало координат.

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая проходит через точку и ее направление определяется угловым коэффициентом k. Уравнение этой прямой можно записать в виде , где b - пока неизвестная величина. Так как прямая проходит через точку , то координаты точки удовлетворяют уравнению прямой:. Отсюда . Подставляя значение b в уравнение, получим искомое уравнение прямой: , т. е.

(10.5)

Уравнение (10.5) с различными значениями k называют также уравнениями пучка прямых с центром в точке Из этого пучка нельзя определить лишь прямую, параллельную оси Оу.

Уравнение прямой, проходящей через две точки

Пусть прямая проходит через точки и . Уравнения прямой, проходящей через точку M 1 , имеет вид

(10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку , то координаты этой точки должны удовлетворять уравнению (10.6): . Οтсюда находим . Подставляя найденное значение k в уравнение (10.6), получим уравнение прямой, проходящей через точки M 1 и M 2 .

(10.7)

Предполагается, что в этом уравнении ·

Если x 2 = x 1 прямая, проходящая через точки и параллельна оси ординат. Ее уравнение имеет вид .

Если y 2 = y 1 то уравнение прямой может быть записано в виде , прямая M 1 M 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке , а ось Оу – в точке (см. рис. 42). В этом случае уравнение (10.7) примет вид

Это уравнение называется уравнением прямой в отрезках , так как числа α и b указывают, какие отрезки отсекает прямая на осях координат.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку перпендикулярно данному ненулевому вектору .

Возьмем на прямой произвольную точку М(х;у) и рассмотрим вектор (см. рис. 43). Поскольку векторы и перпендикулярны, то их скалярное произведение равно нулю: , то есть

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.

Вектор , перпендикулярный прямой, на­зывается нормальным вектором этой прямой. Уравнение (10.8) можно переписать в виде

(10.9)

где А и B- координаты нормального вектора, - сво­бодный член. Уравнение (10.9) есть общее уравнение прямой (см. (10.4)).

Полярное уравнение прямой

Найдем уравнение прямой в полярных координатах. Ее положение можно опреде­лить, указав расстояние ρ от полюса О до данной прямой и угол α между полярной осью ОΡ и осью l , проходящей через полюс О перпендикулярно данной прямой (см. рис. 44).

Для любой точки на данной прямой имеем:

С другой стороны,

Следовательно,

(10.10)

Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.

Нормальное уравнение прямой

Пусть прямая определяется заданием p и α (см. рис. 45). Рассмотрим прямоугольную систему координат . Введем полярную систему, взяв за полюс и за полярную ось. Уравнение прямой можно записать в виде

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: , . Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид

(10.11)

Уравнение (10.11) называется нормальным уравнением прямой .

Покажем, как привести уравнение (10.4) прямой к виду (10.11).

Умножим все члены уравнения (10.4) на некоторый множитель . Получим . Это уравнение долж­но обратиться в уравнение (10.11). Следо­вательно, должны выполняться равенства: , , . Из первых двух равенств находим,т. е. . Множитель λ называется нормирующим множителем . Согласно третьему равенству знак нормирующего множителя противоположен знаку свобод­ного члена С общего уравнения прямой.

Уравнение линии на плоскости.

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f (x ) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t .

Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Расстояние от точки до прямой.

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим :

Подставляя эти выражения в уравнение (1), находим:

.

Теорема доказана.

Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

K 1 = -3; k 2 = 2 tg j = ; j = p /4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

Уравнение линии на плоскости

Основные вопросы лекции: уравнения линии на плоскости; различные формы уравнения прямой на плоскости; угол между прямыми; условия параллельности и перпендикулярности прямых; расстояние от точки до прямой; кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и геометрические свойства; уравнения плоскости и прямой в пространстве.

Уравнение вида называется уравнением прямой в общем виде.

Если выразить в этом уравнении , то после замены и получим уравнение , называемое уравнением прямой с угловым коэффициентом, причем , где – угол между прямой и положительным направлением оси абсцисс. Если же в общем уравнении прямой перенести свободный коэффициент в правую сторону и разделить на него, то получим уравнение в отрезках

Где и – точки пересечения прямой с осями абсцисс и ординат соответственно.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Прямые называются перпендикулярными, если они пересекаются под прямым углом.

Пусть заданы две прямые и .

Чтобы найти точку пересечения прямых (если они пересекаются) необходимо решить систему с этими уравнениями. Решение этой системы и будет точкой пересечения прямых. Найдем условия взаимного расположения двух прямых.

Так как , то угол между этими прямыми находится по формуле

Отсюда можно получить, что при прямые будут параллельными, а при – перпендикулярны. Если прямые заданы в общем виде, то прямые параллельны при условии и перпендикулярны при условии

Расстояние от точки до прямой можно найти по формуле

Нормальное уравнение окружности:

Эллипсом называется геометрическое место точек на плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение эллипса имеет вид:


. Вершинами эллипса называются точки , , ,. Эксцентриситетом эллипса называется отношение

Гиперболой называется геометрическое место точек на плоскости, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение гиперболы имеет вид:

где - большая полуось, - малая полуось и . Фокусы находятся в точках . Вершинами гиперболы называются точки , . Эксцентриситетом гиперболы называется отношение

Прямые называются асимптотами гиперболы. Если , то гипербола называется равнобочной.

Из уравнения получаем пару пересекающихся прямых и .

Параболой называется геометрическое место точек на плоскости, от каждой из которых расстояние до данной точки, называемой фокусом, равно расстоянию до данной прямой называемой директрисой, есть величина постоянная.

Каноническое уравнение параболы


Прямая называется директрисой, а точка – фокусом.

Понятие функциональной зависимости

Основные вопросы лекции: множества; основные операции над множествами; определение функции, ее область существования, способы задания; основные элементарные функции, их свойства и графики; числовые последовательности и их пределы; предел функции в точке и на бесконечности; бесконечно малые и бесконечно большие величины и их свойства; основные теоремы о пределах; замечательные пределы; непрерывность функции в точке и на интервале; свойства непрерывных функций.

Если каждому элементу множества ставится в соответствие вполне определенный элемент множества , то говорят что на множестве задана функция. При этом называется независимой переменной или аргументом, а – зависимой переменной, а буква обозначает закон соответствия.

Множество называется областью определения или существования функции, а множество – областью значений функции.

Существуют следующие способы задания функции

1. Аналитический способ, если функция задана формулой вида

2. Табличный способ состоит в том, что функция задается таблицей, содержащей значения аргумента и соответствующие значения функции

3. Графический способ состоит в изображении графика функции – множества точек плоскости, абсциссы которых есть значения аргумента , а ординаты – соответствующие им значения функции

4. Словесный способ, если функция описывается правилом ее составления.

Основные свойства функции

1. Четность и нечетность. Функция называется четной, если для всех значений из области определения и нечетной, если . В противном случае функция называется функцией общего вида.

2. Монотонность. Функция называется возрастающей (убывающей) на промежутке , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции.

3. Ограниченность. Функция называется ограниченной на промежутке , если существует такое положительное число , что для любого . В противном случае функция называется неограниченной.

4. Периодичность. Функция называется периодической с периодом , если для любых из области определения функции .

Классификация функций.

1. Обратная функция. Пусть есть функция от независимой переменной , определенной на множестве с областью значений . Поставим в соответствие каждому единственное значение , при котором . Тогда полученная функция , определенная на множестве с областью значений называется обратной.

2. Сложная функция. Пусть функция есть функция от переменной , определенной на множестве с областью значений , а переменная в свою очередь является функцией.

Наиболее часто используются в экономике следующие функции.

1. Функция полезности и функция предпочтений – в широком смысле зависимости полезности, то есть результата, эффекта некоторого действия от уровня интенсивности этого действия.

2. Производственная функция – зависимость результата производственной деятельности от обусловивших его факторов.

3. Функция выпуска (частный вид производственной функции) – зависимость объема производства от начало или потребления ресурсов.

4. Функция издержек (частный вид производственной функции) – зависимость издержек производства от объема продукции.

5. Функции спроса, потребления и предложения – зависимость объема спроса, потребления или предложения на отдельные товары или услуги от различных факторов.

Если по некоторому закону каждому натуральному числу поставлено в соответствие вполне определенное число то говорят, что задана числовая последовательность .

:

Числа называются членами последовательности, а число - общим членом последовательности.

Число называется пределом числовой последовательности , если для любого малого числа найдется такой номер (зависящий от ), что для всех членов последовательности с номерами верно равенство .Предел числовой последовательности обозначается .

Последовательность имеющая предел называется сходящейся, в противном случае – расходящейся.

Число называется пределом функции при , если для любого малого числа найдется такое положительное число , что для всех таких, что верно неравенство .

Предел функции в точке. Пусть функция задана в некоторой окрестности точки , кроме, быть может, самой точки . Число называется пределом функции при , если для любого, даже сколь угодно малого , найдется такое положительное число (зависящий от ), что для всех и удовлетворяющих условию выполняется неравенство . Этот предел обозначается .

Функция называется бесконечно малой величиной при, если ее предел равен нулю.

Свойства бесконечно малых величин

1. Алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

2. Произведение бесконечен малой величины на ограниченную функцию есть величина бесконечно малая

3. Частное от деления бесконечно малой величины на функцию предел которой отличен от нуля, есть величина бесконечно малая.

Понятие производной и дифференциала функции

Основные вопросы лекции: задачи, приводящие к понятию производной; определение производной; геометрический и физический смысл производной; понятие дифференцируемой функции; основные правила дифференцирования; производные основных элементарных функций; производная сложной и обратной функции; производные высших порядков, основные теоремы дифференциального исчисления; теорема Лопиталя; раскрытие неопределенностей; возрастание и убывание функции; экстремум функции; выпуклость и вогнутость графика функции; аналитические признаки выпуклости и вогнутости; точки перегиба; вертикальные и наклонные асимптоты графика функции; общая схема исследования функции и построение ее графика, определение функции нескольких переменных; предел и непрерывность; частные производные и дифференциал функции; производная по направлению, градиент; экстремум функции нескольких переменных; наибольшее и наименьшее значения функции; условный экстремум, метод Лагранжа.

Производной функции называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует)

.

Если функция в точке имеет конечную производную, то функция называется дифференцируемой в этой точке. Функция дифференцируемая в каждой точке промежутка , называется дифференцируемой на этом промежутке.

Геометрический смысл производной: производная есть угловой коэффициент (тангенс угла наклона) касательной, приведенной к кривой в точке .

Тогда уравнение касательной к кривой в точке примет вид

Механический смысл производной: производная пути по времени есть скорость точки в момент времени :

Экономический смысл производной: производная объема произведенной продукции по времени есть производительность труда в момент

Теорема. Если функция дифференцируема в точке , то она в этой точке непрерывна.

Производная функции может быть найдена по следующей схеме

1. Дадим аргументу приращение и найдем наращенное значение функции .

2. Находим приращение функции .

3. Составляем отношение .

4. Находим предел этого отношения при, то есть (если этот предел существует).

Правила дифференцирования

1. Производная постоянной равна нулю, то есть.

2. Производная аргумента равна 1, то есть .

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций, то есть .

4. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, то есть

5. Производная частного двух дифференцируемых функций может быть найдена по формуле:

.

Теорема. Если и – дифференцируемые функции от своих переменных, то производная сложной функции существует и равна производной данной функции по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по независимой переменной , то есть


Теорема. Для дифференцируемой функции с производной не равной нулю, производная обратной функции равна обратной величине производной данной функции, то есть .

Эластичностью функции называется предел отношения относительного приращения функции к относительному приращению переменной при:

Эластичность функции показывает приближенно, на сколько процентов изменится функция при изменении независимой переменной на один процент.

Геометрически это означает что эластичность функции (по абсолютной величине) равна отношению расстояний по касательной от данной точки графика функции до точек ее пересечения с осями и .

Основные свойства эластичности функции:

1. Эластичность функции равна произведению независимой переменной на темп изменения функции , то есть .

2. Эластичность произведения (частного) двух функций равна сумме (разности) эластичностей этих функций:

, .

3. Эластичность взаимообратных функций – взаимно обратные величины:

Эластичность функции применяется при анализе спроса и потребления.

Теорема Ферма. Если дифференцируемая на промежутке функция достигает наибольшего или наименьшего значения во внутренней точке этого промежутка, то производная функции в этой точке равна нулю, то есть .

Теорема Ролля. Пусть функция удовлетворяет следующим условиям:

1) непрерывна на отрезке ;

2) дифференцируема на интервале ;

3) на концах отрезка принимает равные значения, то есть .

Тогда внутри отрезка существует по крайней мере одна такая точка , в которой производная функции равна нулю: .

Теорема Лагранжа. Пусть функция удовлетворяет следующим условиям

1. Непрерывна на отрезке .

2. Дифференцируема на интервале ;

Тогда внутри отрезка существует по крайней мере одна такая точка , в которой производная равна частному от деления приращения функции на приращение аргумента на этом отрезке, то есть .

Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле. Итак, если имеется неопределенность вида или , то

Теорема (достаточное условие возрастания функции)

Если производная дифференцируемой функции положительна внутри некоторого промежутка Х, то она возрастаетна этом промежутке.

Теорема (достаточное условие убывания функции), Если производная дифференцируемой функции отрицательна внутри некоторого промежутка, то она убывает на этом промежутке.

Точка называется точкой максимума функции , если в некоторой окрестности точки выполняется неравенство .

Точка называется точкой минимума функции , если в некоторой окрестности точки выполняется неравенство .

Значения функции в точках и называются соответственно максимумом и минимумом функции. Максимум и минимум функции объединяются общим названием экстремума функции.

Для того, чтобы функция имела экстремум в точке необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.

Первое достаточное условие экстремума. Теорема.

Если при переходе через точку производная дифференцируемой функции меняет свой знак с плюса на минус, то точка есть точка максимума функции , а если с минуса на плюс, – то точка минимума.

Схема исследования функции на экстремум.

1. Найти производную .

2. Найти критические точки функции, в которых производная или не существует.

3. Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов функции.

4. Найти экстремумы (экстремальные значения) функции.

Второе достаточное условие экстремума. Теорема.

Если первая производная дважды дифференцируемой функции равна нулю в некоторой точке , а вторая производная в этой точке положительна, то есть точка минимума функции , если отрицательна, то – точка максимума.

Для отыскания наибольшего и наименьшего значений на отрезке пользуемся следующей схемой.

1. Найти производную .

2. Найти критические точки функции, в которых или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее и наименьшее .

Функция называется выпуклой вверх на промежутке Х, если отрезок соединяющий любые две точки графика лежит под графиком функции.

Функция называется выпуклой вниз на промежутке Х, если отрезок соединяющий любые две точки графика лежит над графиком функции.

Теорема. Функция выпукла вниз (вверх) на промежутке Х тогда и только тогда, когда ее первая производная на этом промежутке монотонно возрастает (убывает).

Теорема. Если вторая производная дважды дифференцируемой функции положительна (отрицательна) внутри некоторого промежутка Х, то функция выпукла вниз (вверх) на этом промежутке.

Точкой перегиба графика непрерывной функции называется точка, разделяющая интервалы, в которых функция выпукла вниз и вверх.

Теорема (необходимое условие перегиба). Вторая производная дважды дифференцируемой функции в точке перегиба равна нулю, то есть .

Теорема (достаточное условие перегиба). Если вторая производная дважды дифференцируемой функции при переходе через некоторую точку меняет свой знак, то есть точка перегиба ее графика.

Схема исследования функции на выпуклость и точки перегиба:

1. Найти вторую производную функции .

2. Найти точки, в которых второй производная или не существует.

3. Исследовать знак второй производной слева и справа от найденных точек и сделать вывод об интервалах выпуклости и наличии точек перегиба.

4. Найти значения функции в точках перегиба.

При исследовании функции на построение их графиков рекомендуется использовать следующую схему:

1. Найти область определения функции.

2. Исследовать функцию на четность – нечетность.

3. Найти вертикальные асимптоты

4. Исследовать поведение функции в бесконечности, найти горизонтальные или наклонные асимптоты.

5. Найти экстремумы и интервалы монотонности функции.

6. Найти интервалы выпуклости функции и точки перегиба.

7. Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

Дифференциалом функции называется главная, линейная относительно часть приращения функции, равная произведению производной на приращении независимой переменной.

Пусть имеется переменных величин, и каждому набору их значений из некоторого множества Х соответствует одно вполне определенное значение переменной величины . Тогда говорят, что задана функция нескольких переменных .

Переменные называются независимыми переменными или аргументами, - зависимой переменной. Множество Х называется областью определения функции.

Многомерным аналогом функции полезности является функция , выражающая зависимость от приобретенных товаров.

Также на случай переменных обобщается понятие производственной функции, выражающей результат производственной деятельности от обусловивших его факторов . меньшее, чем по определению и непрерывны в самой точке. Тогда частные производные., и найти критические точки функции.

3. Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточного условия сделать вывод о наличии экстремумов.

Найти экстремумы (экстремальные значения) функции.


Литература

1. Высшая математика для экономистов: Учебник для вузов / Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2003.

2.Е.С. Кочетков, С.О. Смерчинская Теория вероятностей в задачах и упражнениях / М. ИНФРА-М 2005.

3. Высшая математика для экономистов: Практикум / Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2004. Ч. 1, 2

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М., Высшая школа, 1977

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М., Высшая школа, 1977

6. М.С. Красс Математика для экономических специальностей: Учебник/ М. ИНФРА-М 1998.

7. Выгодский М.Я. Справочник по высшей математике. – М., 2000.

8.Берман Г.Н. Сборник задач по курсу математического анализа. – М.: Наука, 1971.

9.А.К. Казашев Сборник задач по высшей математике для экономистов – Алматы - 2002 г.

10.Пискунов Н.С. Дифференциальное и интегральное исчисление. – М.: Наука, 1985, Т. 1,2.

11.П.Е. Данко, А.Г. Попов, Т.Я. Кожевников Высшая математика в упражнениях и задачах/ М. ОНИКС-2005.

12.И.А. Зайцев Высшая математика/ М. Высшая школа-1991 г.

13.Головина Л.И. Линейная алгебра и некоторые ее приложения. – М.: Наука, 1985.

14.Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы анализа экономики. – М.: ДИС, 1997.

15.Карасев А.И., Аксютина З.М., Савельева Т.И. Курс высшей математики для экономических вузов. – М.: Высшая школа, 1982 – Ч 1, 2.

16.Колесников А.Н. Краткий курс математики для экономистов. – М.: Инфра-М, 1997.

17.В.С. Шипацев Задачник по высшей математике-М. Высшая школа, 2005 г.