Химия

Альбедо для различных естественных поверхностей. Что такое альбедо? Смотреть что такое "Альбедо" в других словарях

Альбедо для различных естественных поверхностей. Что такое альбедо? Смотреть что такое

Альбедо

(от позднелат. albedo, белизна)

Доля падающего потока излучения или частиц, отраженная поверхностью тела. Различают несколько видов альбедо. Истинное (или ламбертово ) альбедо , совпадающее с коэффициентом диффузного отражения, - это отношение потока, рассеянного плоским элементом поверхности во всех направлениях, к падающему на него потоку. Если поверхность освещается и наблюдается вертикально, то такое истинное альбедо называют нормальным . Для света нормальное альбедо чистого снега около 1.0, а древесного угля около 0.04.

Значение альбедо зависит от спектра падающего излучения и от свойств поверхности. Поэтому отдельно измеряют альбедо для разных спектральных диапазонов (оптическое, ультрафиолетовое, инфракрасное ), поддиапазонов (визуальное, фотографическое) и даже для отдельных длин волн (монохроматическое альбедо ).

В астрономии часто используют геометрическое , или плоское альбедо - отношение освещенности у Земли (т.е., блеска), создаваемой планетой в полной фазе, к освещенности, которую создал бы плоский абсолютно белый экран того же размера, что и планета, отнесенный на ее место и расположенный перпендикулярно лучу зрения и солнечным лучам. Визуальное геометрическое альбедо Луны 0.12; Земли 0.367.

Для расчета энергетического баланса планет используется сферическое альбедо ("альбедо Бонда "), введенное американским астрономом Д.Ф.Бондом (1825-1865) в 1861 г. Это отношение отраженного всей планетой потока излучения к падающему на нее потоку. Бондовское альбедо Земли около 0.39, у лишенной атмосферы Луны оно 0.067, а у покрытой облаками Венеры 0.77.

Суммарная солнечная радиация, приходя­щая на земную поверхность, частично от нее отражается и теряется ею - это отражен­ная радиация (R k), она составляет около 3 % от всей солнечной радиации. Оставшаяся ра­диация поглощается верхним слоем почвы или воды и называется поглощенной радиацией (47 %). Она служит источником энергии всех движений и процессов в атмосфере. Величи­на отражения и соответственно поглощения солнечной радиации зависит от отражательной способности поверхности, или альбедо. Аль­бедо поверхности - это отношение отра­женной радиации к суммарной радиации, вы­раженное в долях от единицы или в процен­тах: А=R k /Q∙100 % .Отраженная радиация выражается формулой R k =Q∙A, оставшаяся поглощенная -Q–R k или (Q·(1–А), где 1– А – коэффициент поглощения, причем А рассчитывается в долях от единицы.


Альбедо земной поверхности зависит от ее свойств и состояния (цвета, влажности, ше­роховатости и т. д.) и изменяется в больших пределах, особенно в умеренных и субполяр­ных широтах в связи со сменой сезонов года. Наиболее высокое альбедо у свежевыпавше­го снега - 80-90 %, у сухого светлого пес­ка - 40 %, у растительности - 10-25 %, у влажного чернозема - 5 %. В полярных об­ластях высокое альбедо снега сводит на нет преимущество больших величин суммарной ра­диации, получаемых в летнее полугодие. Аль­бедо водных поверхностей в среднем меньше, чем суши, так как в воде лучи глубже прони­кают в верхние слои, чем в почвогрунтах, рас­сеиваются там и поглощаются. При этом на альбедо воды большое влияние оказывает угол падения солнечных лучей: чем он меньше, тем больше отражательная способность. При от­весном падении лучей альбедо воды составля-

ет 2- 5 %, при малых углах - до 70 %. В целом альбедо поверхности Мирового оке­ана составляет менее 20 %, так что вода по­глощает до 80 % суммарной солнечной ради­ации, являясь мощным аккумулятором тепла на Земле.

Интересно также распределение альбедо на различных широтах земного шара и в разные сезоны.

Альбедо в целом увеличивается от низких широт к высоким, что связано с возрастаю­щей облачностью над ними, снежной и ледя­ной поверхностью полярных областей и умень­шением угла падения солнечных лучей. При этом видны локальный максимум альбедо в экваториальных широтах вследствие большой


облачности и минимумы в тропических широ­тах с их минимальной облачностью.

Сезонные вариации альбедо в северном (материковом) полушарии значительнее, не­жели в южном, что обусловлено более ост­рой реакцией его на сезонные изменения при­роды. Это особенно заметно в умеренных и субполярных широтах, где летом альбедо по­нижено из-за зеленой растительности, а зи­мой повышено за счет снежного покрова.

Планетарное альбедо Земли - отношение уходящей в Космос «неиспользованной» ко­ротковолновой радиации (всей отраженной и части рассеянной) к общему количеству сол­нечной радиации, поступающей на Землю. Оно оценивается в 30 %.

Когда астрономы говорят об отражательных свойствах поверхности планет и спутников, они часто используют термин альбедо. Однако, обратившись за разъяснением этого понятия к справочникам и энциклопедиям, мы узнаем, что существует множество различных видов альбедо: истинное, видимое, нормальное, плоское, монохроматическое, сферическое и так далее. Есть от чего загрустить. Поэтому давайте попробуем разобраться в этом круговороте терминов.

Само слово "альбедо" идет от латинского albedo - белизна. В самом общем виде так называют долю упавшего излучения, отраженного твердой поверхностью или рассеянного полупрозрачным телом. Поскольку величина отраженного излучения не может превосходить величину падающего излучения, то это отношение, то есть альбедо, всегда заключено в пределах от 0 до 1. Чем выше его значение, тем большая доля падающего света будет отражена.

Видимость всех несамосветящихся тел полностью определяется их альбедо, то есть их отражательной способностью. Можно даже сказать, что мы просто не видели бы несамосветящиеся предметы, если бы они не могли отражать свет. Благодаря этому свойству мы "на глаз" определяем форму тела, природу материала, его твердость и другие характеристики. Впрочем, умело подобранное альбедо может и скрыть от нас предмет - вспомните военный камуфляж или самолет-невидимку "Стелс". При исследовании тел Солнечной системы измерение альбедо помогает выяснять природу материала, находящегося на поверхности небесного тела, его структуру и даже химический состав.

Мы легко отличаем снег от асфальта потому, что снег почти полностью отражает свет, а асфальт почти полностью его поглощает. Однако мы также легко отличим снег от листа полированного алюминия, хотя оба они почти полностью отражают свет. Значит, только знания доли отраженного света еще не достаточно, чтобы судить о природе материала. Снег рассеивает свет диффузно, во все стороны, а алюминий отражает зеркально. Чтобы учесть эти и другие особенности отражения, различают несколько видов альбедо.

Истинное (абсолютное) альбедо совпадает с так называемым коэффициентом диффузного отражения: это отношение потока, рассеянного плоским элементом поверхности во всех направлениях, к падающему на него потоку.

Чтобы измерить истинное альбедо, требуются лабораторные условия, ведь необходимо учесть свет, рассеянный телом во всех направлениях. Для "полевых" условий более естественным является видимое альбедо - отношение яркости плоского элемента поверхности, освещенного параллельным пучком лучей, к яркости абсолютно белой поверхности, расположенной перпендикулярно к лучам и имеющей истинное альбедо, равное единице.

Если поверхность освещается и наблюдается под углом в 90 градусов, то ее видимое альбедо называют нормальным . Нормальное альбедо чистого снега приближается к 1.0, а древесного угля - около 0.04.

В астрономии часто используют геометрическое (плоское) альбедо - отношение освещенности на Земле, создаваемой планетой в полной фазе, к освещенности, которую создал бы плоский абсолютно белый экран того же размера, что и планета, отнесенный на ее место и расположенный перпендикулярно лучу зрения и солнечным лучам. Физическое понятие "освещенность" астрономы обычно выражают своим словом "блеск" и измеряют его в звездных величинах.

Ясно, что значение альбедо влияет на блеск небесных объектов так же сильно, как их размер и положение в Солнечной системе. Например, если бы астероиды Цереру и Весту расположить рядом, то их блеск был бы почти одинаковым, хотя диаметр Цереры вдвое больше, чем у Весты. Дело в том, что поверхность Цереры значительно хуже отражает свет: альбедо Весты около 0.35, а у Цереры только 0.09.

Значение альбедо зависит как от свойств поверхности, так и от спектра падающего излучения. Поэтому отдельно измеряют альбедо для разных спектральных диапазонов (оптическое, ультрафиолетовое, инфракрасное и так далее) или даже для отдельных длин волн (монохроматическое альбедо). Изучая изменение альбедо с длиной волны и сравнивая полученные кривые с такими же кривыми для земных минералов, образцов почв и различных пород, можно сделать некоторые выводы о составе и структуре поверхности планет и их спутников.

Для расчета энергетического баланса планет используется сферическое альбедо (альбедо Бонда) , введенное американским астрономом Джорджем Бондом в 1861 году. Это отношение отраженного всей планетой потока излучения к падающему на нее потоку. Чтобы точно вычислить сферическое альбедо, вообще говоря, необходимо наблюдать планету под всевозможными фазовыми углами (угол Солнце-планета-Земля). Раньше это было возможно только для внутренних планет и Луны. С появлением искусственных спутников астрономы смогли вычислить сферическое альбедо у Земли, а межпланетные космические аппараты позволили это сделать и для внешних планет. Бондовское альбедо Земли - около 0.33, и в нем очень большую роль играет отражение света от облаков. У лишенной атмосферы Луны оно равно 0.12, а у Венеры, покрытой мощной облачной атмосферой, - 0.76.

Естественно, различные участки поверхности небесных тел, имеющие различную структуру, состав и происхождение, обладают различным альбедо. В этом вы сами можете убедиться, посмотрев хотя бы на Луну. Моря на ее поверхности имеют чрезвычайно низкое альбедо, в отличие, скажем, от лучевых структур некоторых кратеров. Кстати, наблюдая за лучевыми структурами, вы легко заметите, что их внешний вид сильно зависит от того, под каким углом их освещает Солнце. Это происходит как раз вследствие изменения их альбедо, которое принимает максимальное значение, когда лучи падают перпендикулярно к поверхности Луны, где расположены эти образования.

И еще один эксперимент. Посмотрите на Луну в телескоп (или же на какую-либо планету, лучше всего на Марс или Юпитер) с различными светофильтрами. И вы увидите, что, например, в красных лучах поверхность Луны выглядит несколько иначе, чем в синих. Это говорит о том, излучение различных длин волн отражаются от ее поверхности по-разному.

А вот о каком конкретно альбедо нужно говорить в описанных выше примерах, постарайтесь догадаться сами.

Долгосрочный тренд альбедо направлен в сторону похолодания. За последние годы спутниковые измерения показывают незначительный тренд.

Изменение альбедо Земли потенциально является мощным воздействием на климат. Когда альбедо, или отражающая способность, возрастает, больше солнечного света отражается назад в космос. Это оказывает охлаждающее действие на глобальные температуры. Напротив, снижение альбедо нагревает планету. Изменение альбедо всего на 1% дает радиационный эффект 3,4 Вт/м2, сопоставимый с эффектом удвоения СО2. Как же альбедо воздействовало на глобальные температуры в последние десятилетия?

Тренды альбедо до 2000 года

Альбедо Земли определяется несколькими факторами. Снег и лед хорошо отражают свет, так что когда они тают, альбедо понижается. Леса имеют более низкое альбедо, чем открытые пространства, поэтому сведение лесов повышает альбедо (оговоримся, что уничтожение всех лесов не остановит глобальное потепление). Аэрозоли имеют прямое и косвенное влияние на альбедо. Прямым влиянием является отражение солнечного света в космос. Непрямой эффект состоит в действии частиц аэрозолей в качестве центров конденсации влаги, что затрагивает формирование и время жизни облаков. Облака, в свою очередь, влияют на глобальные температуры несколькими способами. Они охлаждают климат за счет отражения солнечного света, но также могут давать эффект нагрева, удерживая исходящее инфракрасное излучение.

Все эти факторы следует учитывать при суммировании различных радиационных воздействий, определяющих климат. Изменения в землепользовании вычисляются исходя из исторических реконструкций изменения состава пахотных земель и пастбищ. Наблюдения со спутников и с земли позволяют определять тренды уровня аэрозолей и альбедо облаков. Можно видеть, что альбедо облаков является самым сильным фактором из различных видов альбедо. Долгосрочный тренд направлен в сторону похолодания, воздействие -0,7Вт/м2 с 1850 по 2000 г.

Рис.1 Среднегодовые общие радиационные воздействия (Chapter 2 of the IPCC AR4) .

Тренды альбедо после 2000 года.

Одним из способов измерения альбедо Земли является пепельный свет Луны. Это солнечный свет, сначала отраженный Землей, а затем отраженный Луной обратно к Земле в ночное время. Пепельный свет Луны измеряется солнечной обсерваторией Big Bear с ноября 1998 года (был также сделан ряд измерений в 1994 и 1995 годах). Рис.2 показывает изменения альбедо по реконструкции спутниковых данных (черная линия) и по измерениям пепельного света Луны (синяя линия) (Palle 2004) .


Рис.2 Изменения альбедо, реконструированные по спутниковым данным ISCCP (черная линия) и по изменениям пепельного света Луны (снняя линия). Правая вертикальная шкала показывает негативное радиационное воздействие (т.е. на охлаждение) (Palle 2004).

Данные на Рис.2 проблематичны. Черная линия, реконструкция спутниковых данных ISCCP "является чисто статистическим параметром и имеет мало физического смысла, поскольку она не учитывает нелинейных отношений между свойствами облаков и поверхности и планетарным альбедо, а также не включает аэрозольных изменений альбедо, например, связанных с вулканом Пинатубо или антропогенной эмиссией сульфатов " (Real Climate).

Еще более проблематическим является пик альбедо около 2003 года, видимый на синей линии пепельного света Луны. Он сильно противоречит спутниковым данным, показывающим в это время незначительный тренд. Для сравнения можно вспомнить извержение Пинатубо в 1991 году, заполнившее атмосферу аэрозолями. Эти аэрозоли отражали солнечный свет, создав отрицательное радиационное воздействие 2,5 Вт/м2. Это резко снизило глобальную температуру. Данные пепельного света тогда показывали воздействие почти -6 Вт/м2, что должно было означать еще большее падение температуры. Никаких похожих событий не произошло в 2003 году. (Wielicki 2007).

В 2008 году была обнаружена причина несоответствия. Обсерватория Big Bear установила новый телескоп для измерения пепельного света Луны в 2004 году. С новыми улучшенными данными они заново откалибровали свои старые данные и пересмотрели свои оценки альбедо (Palle 2008). Рис. 3 показывает старые (черная линия) и обновленные (синяя линия) значения альбедо. Аномальный пик 2003 года исчез. Впрочем, тренд повышения альбедо с 1999 по 2003 год сохранился.


Рис. 3 Изменение альбедо Земли по данным замеров пепельного света Луны. Черная линия - изменения альбедо по публикации 2004 года (Palle 2004). Синяя линия - обновленные изменения альбедо после улучшения процедуры анализа данных, также включены данные за больший период времени (Palle 2008).

Насколько точно определяется альбедо по пепельному свету Луны? Метод не является глобальным по охвату. Он затрагивает примерно треть Земли в каждом наблюдении, некоторые области всегда остаются "невидимыми" с места наблюдений. Кроме того, измерения нечасты, они делаются в узком диапазоне длин волн 0,4-0,7 µm (Bender 2006).

В отличие от этого спутниковые данные, такие как CERES, являются глобальным измерением коротковолнового излучения Земли, включают все эффекты свойств поверхности и атмосферы. По сравнению с измерениями пепельного света, они покрывают более широкий диапазон (0.3-5.0 µm). Анализ данных CERES показывает отсутствие долгосрочного тренда альбедо с марта 2000 по июнь 2005 года. Сравнение с тремя независимыми наборами данных (MODIS, MISR и SeaWiFS) демонстрирует "замечательное соответствие" всех 4-х результатов (Loeb 2007a).


Рис. 4 Месячные изменения средних значений CERES SW TOA flux and MODIS cloud fraction ().

Альбедо воздействовало на глобальные температуры - в основном в сторону похолодания в долгосрочной тенденции. Что касается недавних трендов, данные пепельного света показывают рост альбедо с 1999 по 2003 год с незначительным изменениями после 2003 года. Спутники показывают незначительные изменения с 2000 года. Радиационное воздействие от изменений альбедо в последние годы минимальное.

Поверхность Характеристика Альбедо, %
Почвы
чернозем сухой, ровная поверхность свежевспаханный, влажный
суглинистая сухая влажная
песчаная желтоватая белесая речной песок 34 – 40
Растительный покров
рожь, пшеница в период полной спелости 22 – 25
пойменный луг с сочной зеленой травой 21 – 25
трава сухая
лес еловый 9 – 12
сосновый 13 – 15
березовый 14 – 17
Снежный покров
снег сухой свежевыпавший влажный чистый мелкозернистый влажный пропитан водой, серый 85 – 95 55 – 63 40 – 60 29 – 48
лед речной голубовато-зелёный 35 – 40
морской молочно-голубой цв.
Водная поверхность
при высоте Солнца 0,1° 0,5° 10° 20° 30° 40° 50° 60-90° 89,6 58,6 35,0 13,6 6,2 3,5 2,5 2,2 – 2,1

Преобладающая часть прямой радиации, отраженной земной по­верхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство около одной трети рассеянной радиации. Отношение всей уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного аль­бедо Земли. Планетарное альбедо Земли оценивается в 35 – 40 %. Основную его часть составляет отражение солнечной радиации облаками.

Таблица 2.6

Зависимость величины К н от широты места и времени года

Широта Месяцы
III IV V VI VII VIII IX X
0.77 0.76 0.75 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.77 0.76 0.76 0.77 0.78 0.81
0.80 0.77 0.77 0.76 0.76 0.77 0.79 0.82
0.80 0.78 0.77 0.77 0.77 0.78 0.79 0.83
0.81 0.78 0.77 0.77 0.77 0.78 0.80 0.83
0.82 0.78 0.78 0.77 0.77 0.78 0.80 0.84
0.82 0.79 0.78 0.77 0.77 0.78 0.81 0.85
0.83 0.79 0.78 0.77 0.77 0.79 0.82 0.86

Таблица 2.7

Зависимость величины К в+с от широты места и времени года

(по А.П. Браславскому и З.А. Викулиной)

Широта Месяцы
III IV V VI VII VIII IX X
0.46 0.42 0.38 0.37 0.38 0.40 0.44 0.49
0.47 0.42 0.39 0.38 0.39 0.41 0.45 0.50
0.48 0.43 0.40 0.39 0.40 0.42 0.46 0.51
0.49 0.44 0.41 0.39 0.40 0.43 0.47 0.52
0.50 0.45 0.41 0.40 0.41 0.43 0.48 0.53
0.51 0.46 0.42 0.41 0.42 0.44 0.49 0.54
0.52 0.47 0.43 0.42 0.43 0.45 0.50 0.54
0.52 0.47 0.44 0.43 0.43 0.46 0.51 0.55
0.53 0.48 0.45 0.44 0.44 0.47 0.51 0.56
0.54 0.49 0.46 0.45 0.45 0.48 0.52 0.57
0.55 0.50 0.47 0.46 0.46 0.48 0.53 0.58
0.56 0.51 0.48 0.46 0.47 0.49 0.54 0.59
0.57 0.52 0.48 0.47 0.47 0.50 0.55 0.60
0.58 0.53 0.49 0.48 0.48 0.51 0.56 0.60