Начальная школа

Иридий утяжеляет метеориты и облегчает жизнь человека. Иридий — описание, область применения Изотопы – стабильные и нестабильные

Иридий утяжеляет метеориты и облегчает жизнь человека. Иридий — описание, область применения Изотопы – стабильные и нестабильные
  • Химический символ иридия - Ir.
  • Атомный номер иридия – 77.
  • Атомный вес – 192,22 а. е. м.
  • Степени окисления: 6, 4, 3, 2, 1, 0, - 1.
  • Плотность иридия (при температуре 20 градусов) – 22,65 г/см3.
  • Плотность жидкого иридия (при температуре 2443 градуса) – 19,39 г/см3.
  • Температура плавления иридия - 2466 градусов.
  • Температура кипения иридия - 44,28 градусов.
  • Структурная кристаллическая решетка у иридия – кубическая гранецентрированная.
  • Химический элемент - иридий, привезенный из Южной Америки в 1803 году, был обнаружен в природной , английским химиком С. Теннантом.
  • Свое название иридий получил от греческого слова – радуга, так как соли этого металла, имеют разнообразную окраску.
  • Иридий это простой химический элемент, переходный драгоценный металл платиновой группы, серебристо – белого цвета, твердый и тугоплавкий.
  • Иридий имеет высокую плотность, как и у осмия. Теоретически иридий и имеют одинаковую плотность, где разница состоит в незначительной погрешности.
  • Иридий даже при температуре 2000 градусов, имеет высокую коррозийную стойкость.
  • В земной коре иридий встречается крайне редко. Его содержание в природе еще меньше, чем и платины. Иридий встречается вместе с рением, и . Иридий содержится часто в метеоритах. Сегодня до сих пор не известно точное содержание иридия в природе. Не исключено, что иридия содержится в природе значительно больше, чем предполагается. Предполагается что иридий, обладая большой плотностью и сродством к железу, в результате формирования планеты – земля, смог сместиться вглубь земли, в ядро планеты.
  • Иридий это очень тяжелый и твердый благородный металл. Высокая механическая прочность иридия, делает это металл труднообрабатываемым. Радиоактивные изотопы иридия, были получены искусственно. В природе иридий представлен в виде смеси двух стабильных изотопов: иридий - 191 (37,3 процента) и иридий – 193 (62,7 процента).
  • В основном иридий получают из анодного шлама, образующегося при электролизе меди и никеля.
  • Иридий это высоко инертный драгоценный металл.
  • Иридий не окисляется на воздухе и при действии на него высокой температуры. Однако при прокаливании порошка иридия при температуре от 600 до 1000 градусов, в токе кислорода, этот металл в незначительном количестве образует – оксид иридия (IrO2), а при температуре 1200 градусов, он частично испаряется в виде - оксида иридия (IrO3).
  • В компактном виде иридий при температуре до 100 градусов, не взаимодействует с кислотами и их смесями (например, с царской водкой).
  • Иридий в виде иридиевой черни (свежеосажденная), частично растворяется в царской водке (смесь соляной и азотной кислот) и образует смесь двух соединений иридия: Ir(3) и Ir(4).
  • Порошок иридия при температуре 600 - 900 градусов, растворяется хлорированием в присутствии хлоридов щелочных металлов или спеканием с оксидами: Na2O2 и BaO2, с последующим растворением в кислотах.
  • Иридий взаимодействует при температуре красного каления с хлором и серой.
  • Иридий взаимодействует при температуре 400 - 450 градусов с фтором.
  • Ядерный изомер иридий – 192 m2, с периодом полураспада - 241 год, применяется в качестве источника электроэнергии.
  • В основном иридий используется в виде сплавов. Самый распространенный из них, это сплав иридия и платины. Сплавы иридия идут на изготовление химической посуды, хирургических инструментов, нерастворимых анодов, ювелирных изделий, а так же этот сплав находит свое применение в точном приборостроении.
  • Иридий в сплаве с торием и вольфрамом, используется как материал для термоэлектрических генераторов.
  • Сплав иридия с гафнием, это материал для топливных баков, применяемых в космических аппаратах.
  • Иридий в сплаве с вольфрамом, родием и рением, идет на изготовление термопар, которые измеряют температуру свыше 2000 градусов.
  • Иридий в сплаве с церием и лантаном, используется как материал для термоэмиссионных катодов.
  • Иридий используют для изготовления наконечников у перьев ручек, где этот металл особенно хорошо виден на золотых перьях.
  • Иридий вместе с платиной и медью, используется в качестве компонентного металла для приготовления сплава. Из этого сплава изготавливают дорогие электроды, которые имеются в свечах зажигания двигателей внутреннего сгорания. Сплав иридия, платины и меди увеличивает срок службы этих электродов, на срок от 100 – 160 тысяч километров пробега.
  • Иридий с платиной это очень прочный и не окисляемый сплав. Благодаря его прочности и стойкости к окислению, из него изготовили даже - эталон килограмма.
  • Иридий не играет биологической роли как микроэлемент. Иридий это нетоксичный металл, хотя соединения иридия типа – гексафторид иридия (IrF6), имеют ядовитые свойства.
  • Иридий – металл и химический элемент. Элемент стоит в таблице Менделеева под атомным номером 77. Считается выходцем из благородных пород, твёрдый, имеет бело-золотой цвет.

    Минерал существует в чистом виде, но первые упоминания об изотопном металле связаны с падением на Землю железоникелевого метеорита. Столкновение с Землёй метеорита произошло 65 млн лет назад, в эпоху трицерапторов и дипладоков. В Земле упавший объект оставил след, последствия которого видны и сегодня. Образовался кратер в 180 километров глубиной, пыль, поднявшаяся из-за нарушения земной коры и падения метеорита, заставила Землю пребывать во мгле 14 дней, случились извержения вулканов на территории Азии, Индостана и Мадагаскара.

    Некоторые учёные предполагают, что именно этот металл погубил всех динозавров и других крупных ящеров, из-за того, что начал выделять токсин при соприкосновении с хлором и земным ядром. Как известно, металл плавится при 2300 градусов по Цельсию.

    Так, он лежал в Земле все 65 млн лет, пока его не обнаружили по случайности люди, искавшие платину и нашедшие её на месте старого кратера.

    Как земной элемент, иридий был обнаружен в 1804 году, учёным С. Теннатом. В результате проведения процедур по изучению платиновых минералов и выявления в них осмия, был обнаружен иридий.

    Вот так Юкатанская катастрофа привела к тому, что в периодической таблице появился Иридий.

    Происхождение металла

    Иридий – платаноид, являющийся продуктом многофазового ядерного синтезирования элементов. На планете среди других металлов (из 1005) он занимает всего лишь 3%-ое значение, что означает нечастое его обнаружение. Учёные считают, что иридий скрыт в земном ядре или же в расплавленном железоникелевом слое (внешнее ядро).

    В земной коре встречается в виде сплава с осмием или платиной.

    Как получают

    О том, что этот металл встречается только в сплавах, мы уже сказали. Но каким образом возможно получить иридий?
    Источником породы является анодный шлам медноникелевого производства. Продукт – шлам насыщают, после чего, под действием «царской водки», переводят из состояния твёрдого в жидкое, в виде соединений хлорида H2.

    В результате химики получают жидкую смесь металлов и добавляют в неё хлорид аммония NH4Cl. После чего производят выведение осадка из платины, а потом получают комплекс иридия (NH4)2. (NH4)2 прокаливают при помощи кислорода и азота. На выходе получаете металлический иридий.

    Места добычи

    Химический элемент встречается в сплавовом виде в складчатых земных породах гор России, перетонитовых породах, расположенных в ЮАР, Кении, Южной Америке и т. д.

    Где есть платина, там есть и иридий.

    О характеристиках металла, как химического элемента:

    Характеристика Обозначение, значение
    Иридий обозначается символом Ir
    Номер в таблице Менделеева 77
    Вес атома 192,22 а.е.м.
    Степени окисления От 1 до 6 (5 не входит)
    Плотность при комнатной температуре 22,7 г/см^3
    Плотность в жидком состоянии 19,39 г/см^3
    Плавление При 2300 градусов по Цельсию
    Кипение жидкого иридия При 45 градусах Цельсия
    Имеет кристаллическую решётку Гранецентрированного куба

    Элемент встречается разных цветов, самый распространённый – белый – KIrF6, лимонный – IrF5, золотой – K3IrCl6, светло-зелёный – Na3IrBr6, розовый – Cs3IrI6, малиновый – Na2IrBr6, тёмно-синий – IrI3. Разнообразие цветов обусловлено наличием в иридии различных солей.

    Кстати, название своё металл получил за счёт этого разноцветия. Ирида – это богиня радуги в греческой мифологии.

    Свойства и особенности


    Где применяется

    В основном применяют не сам иридий, а его сплавы с металлами.

    Сплав из иридия и платины применяют для изготовления посуды, для проведения химических опытов, создания хирургического инвентаря, ювелирных украшений и нерастворимых анодов. Ещё медно-иридиевую смесь используют для прибороточного строения. Этот сплав является особо прочным, его используют для покрытия сварочных узлов в строительных объектах.

    Также иридий смешивают с гафнием, в таком случае сплав послужит инструментом для создания топливных баков.

    Когда изотопный металл смешивают с вольфрамом, родием или же рением, то из полученной субстанции изготавливают термопары. Термопары – приборы для измерения температур более 2000 градусов.

    Иридий, совместно с церием, латаном применяют в производстве катодов.

    А вот один иридий, без вспомогательных элементов, используют для создания наконечников перьевых ручек.

    Иридий применяют в крупных промышленных масштабах для создания иридиевых свеч сгорания. Такие свечи прослужат на 3 года дольше, чем обычные и выдержат пробег автомашины на 160 тысяч километров больше, чем стандартные.

    За счёт иридия облегчилось строение дефектоскопов, которые выявляют все недостатки механизмов ручного запуска.

    Кроме применения в медицине и промышленности, химический элемент берут за основу проведения многих химических операций. Он является термическим, химическим катализатором для ускорения получений конечного химического продукта. К примеру, его часто применяют для получения азотной кислоты.

    За счёт иридия, в жаростойких тиглях выращивают кристаллы, которые необходимы для лазерной техники. Благодаря учёным и этому дару природы, стала возможной операция по лазерной коррекции зрения, по лазерному дроблению камней в почках и т. д.

    Область применения металла велика, однако стоимость его довольно высокая, поэтому часто иридий заменяют синтетическими химозными элементами, которые уступают природному аналогу во всём.

    Это незаменимый благородный металл, который необходим для функционирования машин, строительных объектов, создания прочных механизмов и прочего.

    Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.

    Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600° С. В этом случае образуется плотное покрытие толщиной до 0,08 мм.

    Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металла-покрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500-600° С. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.

    Можно наносить иридиевые покрытия на и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350-400° С в контролируемой атмосфере, т. е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.

    Но покрытия - не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое -до 99 кг/мм 2 . Поскольку такие обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые привлекают и ювелиров - украшения из этих сплавов красивы и почти не изнашиваются. Из пла-тино-иридиевого сплава делают также эталоны, иногда - хирургический инструмент.

    В будущем иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой - достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь необгорающие платино-иридиевые контакты - они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

    Добавляют не только к платине. Небольшие до-бавки элемента № 77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родия), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.

    Резюмируя, можно сказать, что металлический иридий применяют главным образом из-за его постоянства - постоянны размеры изделий из металла, его физические и химические свойства, причем, если можно так выразиться, постоянны на высшем уровне.

    Как и другие VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты). Один из окислов иридия, IrO 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска…

    Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента - не больше тонны в год. Во всем мире!

    В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены - он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.

    ИРИДИЕВЫЙ СТОРОЖ. Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом - иридием-192. Ядра 192 Ir испускают гамма-лучи высокой

    энергии; период полураспада изотопа равен 74.4 суток, часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию,

    которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью на фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

    ЭФФЕКТ МЁССБАУЭРА. В 1958 г. молодой физик из Германии Рудольф

    Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.

    БЬЕТСЯ АКТИВНЕЕ. Одно из наиболее интересных при менений платино-иридиевых сплавов за последние годы - изготовление из них электрических стимуляторов сердечной деятельности. В больного стенокардией вживляют электроды с пла-тино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него - на платино-иридисвые электроды. Электроды, передавая импульсы на нервы, заставляют биться активнее.

    СТАБИЛЬНЫЕ И НЕСТАБИЛЬНЫЕ. В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в же время - самый ко-роткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада - ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого - иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.

    Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

    77
    2 15 32 18 8 2
    ИРИДИЙ
    192,22
    5d 7 6s 2

    Иридий

    Больше двух столетий прошло с тех пор, как появились первые сведения о платине – белом металле из Южной Америки. Долгое время люди были уверены, что это чистый металл, так же, как золото. Только в самом начале XIX в. Волластон сумел выделить из самородной платины палладий и родий, а в 1804 г. Теннант, изучая черный осадок, оставшийся после растворения самородной платины в царской водке, нашел в нем еще два элемента. Один из них он назвал осмием, а второй – иридием. Соли этого элемента в разных условиях окрашивались в различные цвета. Это свойство и было положено в основу названия: по-гречески слово ιρις, значит «радуга».

    В 1841 г. известный русский химик профессор Карл Карлович Клаус занялся исследованием так называемых платиновых остатков, т.е. нерастворимого осадка, остающегося после обработки сырой платины царской водкой. «При самом начале работы, – писал Клаус, – я был удивлен богатством моего остатка, ибо извлек из него, кроме 10% платины, немалое количество иридия, родия, осмия, несколько палладия и смесь различных металлов особенного содержания»...

    Клаус сообщил горному начальству о богатстве остатков. Власти заинтересовались открытием казанского ученого, которое сулило значительные выгоды. Из платины в то время чеканили монету, и получение драгоценного металла из остатков казалось очень перспективным. Через год Петербургский монетный двор выделил Клаусу полпуда остатков. Но они оказались бедными платиной, и ученый решил провести на них исследование, «интересное для науки».

    «Два года, – писал Клаус, – занимался я постоянно этим трудным, продолжительным и даже вредным для здоровья исследованием» и в 1845 г. опубликовал работу «Химическое исследование остатков уральской платиновой руды и металла рутения». Это было первое систематическое исследование свойств аналогов платины. В нем впервые были описаны и химические свойства иридия.

    Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. В главе об иридии он обратил внимание на неточности, допущенные Берцелиусом при определении основных констант этого элемента, и объяснил эти неточности тем, что маститый ученый работал с иридием, содержащим примесь рутения, тогда еще не известного химикам и открытого лишь в ходе «химического исследования остатков уральской платиновой руды и металла рутения».

    Какой же он, иридий?

    Атомная масса элемента №77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия – частого спутника самородной платины. Самородного иридия в природе нет.

    Иридий – серебристо-белый металл, очень твердый, тяжелый и прочный. По данным фирмы «Интернейшнл Никель и Ко», это самый тяжелый элемент: его плотность 22,65 г/см 3 , а плотность его постоянного спутника – осмия, второго по тяжести 22,61 г/см 3 . Правда, большинство исследователей придерживаются иной точки зрения: они считают, что иридий все-таки немного легче осмия.

    Естественное свойство иридия (он же платиноид!) – высокая коррозионная стойкость. На него не действуют кислоты ни при нормальной, ни при повышенной температуре. Даже знаменитой царской водке монолитный иридий «не по зубам». Только расплавленные щелочи и перекись натрия вызывают окисление элемента №77.

    Иридий стоек к действию галогенов. Он реагирует с ними с большим трудом и только при повышенной температуре. Хлор образует с иридием четыре хлорида: IrCl, IrCl 2 , IrCl 3 и IrCl 4 . Треххлористый иридий получается легче всего из порошка иридия, помещенного в струю хлора при 600°C. Единственное галоидное соединение, в котором иридий шестивалентен, – это фторид IrF 6 . Тонкоизмельченный иридий окисляется при 1000°C и в струе кислорода, причем в зависимости от условий могут получаться несколько соединений разного состава.

    Как и все металлы платиновой группы, иридий образует комплексные соли. Среди них есть и соли с комплексными катионами, например Cl 3 и соли с комплексными анионами, например K 3 · 3H 2 O. Как комплексообразователь иридий похож на своих соседей по таблице Менделеева.

    Иридий получают в виде порошка, который затем прессуют в полуфабрикаты и сплавляют или же порошок переплавляют в электрических печах в атмосфере аргона. Чистый иридий в горячем состоянии можно ковать, однако при обычной температуре он хрупок и не поддается никакой обработке.

    Иридий в деле

    Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать иридий и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом иридий на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.

    Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600°C. В этом случае образуется плотное покрытие толщиной до 0,08 мм.

    Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металла-покрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500...600°C. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.

    Можно наносить иридиевые покрытия на металлы и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350...400°C в контролируемой атмосфере, т.е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.

    Но покрытия – не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое – до 99 кг/мм 2 . Поскольку такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые сплавы привлекают и ювелиров – украшения из этих сплавов красивы и почти не изнашиваются. Из платино-иридиевого сплава делают также эталоны, иногда – хирургический инструмент.

    В будущем сплавы иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой – достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь необгорающие платино-иридиевые контакты – они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

    Иридий добавляют не только к платине. Небольшие добавки элемента №77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. То же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родия), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.

    Резюмируя, можно сказать, что металлический иридий применяют главным образом из-за его постоянства – постоянны размеры изделий из металла, его физические и химические свойства, причем, если можно так выразиться, постоянны на высшем уровне.

    Как и другие металлы VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты). Один из окислов иридия, IrO 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска...

    Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента – не больше тонны в год. Во всем мире!

    В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены – он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.

    Иридиевый сторож

    Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом – иридием-192. Ядра 192 Ir испускают гамма-лучи высокой энергии; период полураспада изотопа равен 74,4 суток. Часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию, которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью па фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

    Эффект Мёссбауэра

    В 1958 г. молодой физик из ФРГ Рудольф Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.

    Сердце бьется активнее

    Одно из наиболее интересных применений платино-иридиевых сплавов за последние годы – изготовление из них электрических стимуляторов сердечной деятельности. В сердце больного стенокардией вживляют электроды с платино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него – на платино-придиевые электроды. Электроды, передавая импульсы на нервы, заставляют сердце биться активнее. Сейчас в СССР многие станции скорой помощи оборудованы подобными генераторами. В случае остановки сердца делают надрез ключичной вены, вводят в нее соединенный с генератором электрод, включают генератор, и через несколько минут сердце вновь начинает работать.

    Изотопы – стабильные и нестабильные

    В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в то же время – самый короткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада – ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого – иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.

    Полезные хлориридаты

    Хлориридатами называют комплексные хлориды четырехвалентного иридия; общая их формула Me 2 . Благодаря хлориридатам можно в принципе уверенно разделять соединения таких похожих элементов, как натрий и калий. Хлориридат натрия растворим в воде, а хлориридат калия – практически нерастворим. Но для такой операции хлориридаты слишком дороги, так как дорог исходный иридий. Это не значит однако, что хлориридаты вообще бесполезны. Способность иридия образовывать эти соединения используют для выделения элемента №77 из смеси платиновых металлов.