Биология

Разыгрывание последовательности значений дискретной случайной величины. Случайные величины дискретного типа и формулы для их разыгрывания Разыгрывание дискретной случайной величины

Разыгрывание последовательности значений дискретной случайной величины. Случайные величины дискретного типа и формулы для их разыгрывания Разыгрывание дискретной случайной величины

Пусть, например, перед нами поставлена задача получить ряд значений дискретной случайной величины X с распределением

где – возможные значения случайной величины Х , расположенные в убывающем порядке; – вероятности этих значений,

Для решения этой задачи представим себе (см. пример в начале главы), что единичный квадрат, площадь которого S o =l, разделен на k площадок, размеры которых S 1 , S 2 ,… , S k заданы в долях единицы и равны соответственно вероятностям p 1 , p 2 , ..., p k . Выберем в единичном квадрате N случайных, равномерно распределенных точек, каждая из которых задана координатами (х, у), представляющими собой значения случайных величин X и Y, равномерно распределенных в интервале от 0 до 1 .

Если i -я точка (i = 1, 2, ..., N) попала в какую-то j -ю площадку, то будем считать, что мы получили значение X, равное , т. е. х i = ξ j . Если i+1 -я точка попала в какую-то ζ - ю площадку, то будем считать, что мы получили значение X, равное ξ j , т. е. х i +1 = ξ j . И так далее.

В пределе при достаточно большом N распределение полученных значений X (х 1 , х 2 ,… , x n) будет сходиться по вероятности к заданному распределению. Это с очевидностью сле­дует из того, что вследствие равномерного распределения случайных точек в площади единичного квадрата число попаданий в каждую площадку при N → ∞ со будет определяться ее размерами, в свою очередь равными вероятности j -го значения случайной величины.

В данном случае двумерные координаты (х, у) использовались только для уяснения аналогии и общности алгоритма метода Монте-Карло при решении различных задач. Вообще же для решения задачи розыгрыша дискретной случайной величины достаточно иметь одну числовую ось.

Подготовка к розыгрышу при этом заключается в том, что на числовой оси У (рис. 9.2) откладывается интервал от 0 до 1 , (), который разбивается, начиная от нуля, на k интервалов длиной, равной соответственно p 1 , p 2 , . . ., p k . Полученные интервалы нумеруются цифрами j = 1, 2, 3, . .., k.

Сам розыгрыш заключается в следующем. Каким-либо способом, например из таблицы случайных чисел, равномерно распределенных(см.

Рисунок 9.2. Вероятности значений случайной величины на числовой оси

разд. 9.4) в интервале от 0 до 1, последовательно считываются значения a i . (i = 1, 2, ... , N) . Затем на оси У определяется в какой интервал на оси У попадает заданное значение точки, то есть где у j = a i .

Если точка а i попадает в интервал с номером j , то считается, что данное значение х i = ξ j . , и т. д.

Разыгрывание дискретной случайной величины, состоящее из множества испытаний, обычно производится на ЭВМ. При этом значения случайной величины а могут быть получены различными путями (см. разд. 9.4).



Пусть распределение разыгрываемой случайной величины задано в памяти машины в виде табл. 9.1.

Таблица 9.1

Распределение дискретной случайной величины

Значения X ζ 1 ζ 2 ζ i ζ к
Вероятность значений p 1 p 2 p i p k
Обеспеченность P 1 P 2 P i P k

В этой таблице i - порядковый номер значений случайной ве­личины X; - значения случайной величины, расположенные в убывающем порядке; р i - вероятность значений ; - обеспеченность значений .

Разыгрывание производится по следующей схеме (рис. 9.3). Задается номер члена ряда (i =1, 2, ..., п). Затем по таблице случайных чисел находится a i , дальше a j сравнивается со значениями обеспеченности Р j (j = 1, 2, . ..,..., k- 1) и если , то i -му члену моделируемого ряда присваивается значение . Затем проверяется i = n , и если равенство выполняется, т. е. получены все п значений, то розыгрыш прекращается, если нет, то i увеличивается на 1 и весь расчет, начиная со 2-го оператора (см. рис. 9.3), повторяется.

Привести в порядок рисунок

Рис. 9.3. Блок-схема розыгрыша ряда значений дискретной случайной величины.

ЛАБОРАТОРНАЯ РАБОТА ММ- 03

РАЗЫГРЫВАНИЕ ДИСКРЕТНЫХ И НЕПРЕРЫВНЫХ СВ

Цель работы: изучение и программная реализация методов разыгрывания дискретных и непрерывных СВ

ВОПРОСЫ ДЛЯ ИЗУЧЕНИЯ ПО КОНСПЕКТУ ЛЕКЦИЙ:

1. Дискретные случайные величины и их характеристики.

2. Разыгрывание полной группы случайных событий.

3. Разыгрывание непрерывной случайной величины методом обратной функции.

4. Выбор случайного направления в пространстве.

5. Стандартное нормальное распределение и его пересчет для заданных параметров.

6. Метод полярных координат для разыгрывания нормального распределения.

ЗАДАЧА 1. Сформулировать (письменно) правило разыгрывания значений дискретной СВ, закон распределения которой задан в виде таблицы. Составить подпрограмму-функцию для разыгрывания значений СВ с использованием БСВ, получаемых от подпрограммы ГСЧ. Разыграть 50 значений СВ и вывести их на экран.

Где N – номер варианта.

ЗАДАЧА 2. Дана функция плотности распределения f(x) непрерывной случайной величины X.

В отчете записать формулы и вычисление следующих величин:

А) константу нормировки;

Б) функцию распределения F(x);

В) математическое ожидание M(X);

Г) дисперсию D(X);

Д) формулу для разыгрывания значений СВ по методу обратной функции.

Составить подпрограмму-функцию для разыгрывания заданной СВ и получить 1000 значений этой СВ.

Построить гистограмму распределения полученных чисел по 20 отрезкам.

ЗАДАЧА 3. Составить процедуру, позволяющую разыграть параметры случайного направления в пространстве. Разыграть 100 случайных направлений в пространстве.

Использовать встроенный датчик псевдослучайных чисел.

Письменный отчет по лабораторной работе должен содержать:

1) Название и цель работы, группу, фамилию и номер варианта студента;

2) По каждой задаче: -условие, -необходимые формулы и математические преобразования, -имя программного файла, реализующего используемый алгоритм, -результаты вычислений.

Отлаженные программные файлы сдаются вместе с письменным отчетом.

ПРИЛОЖЕНИЕ

Варианты плотности распределения непрерывной СВ

Вар-т

Плотность распределения СВ

Вар-т

Плотность распределения СВ

ВВЕДЕНИЕ

Системой принято называть совокупность элементов, между которыми имеются связи любой природы, и она обладает функцией (назначением), которой нет у составляющих ее элементов. Информационные системы, как правило, представляют собой сложные территориально распределенные системы с большим количеством составляющих элементов, обладающие разветвленной сетевой структурой.

Разработка математических моделей, позволяющих оценить показатели функционирования информационных систем, является сложной и трудоемкой задачей. Для определения характеристик таких систем можно применить метод имитационного моделирования с последующей обработкой результатов эксперимента.

Имитационное моделирование является одной из центральных тем при изучении дисциплин "Моделирование систем" и "Математическое моделирование". Предметом имитационного модели­рования является изучение сложных процессов и систем, подвер­женных, как правило, воздействию случайных факторов, путем проведения экспериментов с их имитационными моделями.

Суть метода проста - имитируется “жизнь” системы при многократном повторении испытаний. При этом моделируются и регистрируются случайно меняющиеся внешние воздействия на систему. Для каждой ситуации по уравнениям модели просчитываются системные показатели. Существующие современные методы математической статистики позволяют ответить на вопрос - а можно ли и, с каким доверием, использовать данные моделирования. Если эти показатели доверия для нас достаточны, мы можем использовать модель для изучения данной системы.

Можно говорить об универсальности имитационного моделирования, поскольку оно применяется для решения теоретических и практических задач анализа больших систем, включая задачи оценки вариантов структуры системы, оценки эффективности различных алгоритмов управления системой, оценки влияния измене­ния различных параметров системы на её поведение. Имитационное моделирование может быть положено также в основу синтеза больших систем, когда требуется создать систему с заданными характеристиками при определённых ограничениях, и которая при этом была бы оп­тимальной согласно выбранным критериям.

Имитационное моделирование является одним из наиболее эффективных средств исследования и проектирования сложных систем, а часто единственным практически реализуемым методом исследования процесса их функционирования.

Целью курсовой работы является изучение студентами методов имитационного моделирования и методов обработки статистических данных на ЭВМ с использованием прикладных программных средств. Приведем возможные темы курсовых работ, позволяющих исследовать сложные системы на основе имитационных моделей.

· Имитационное моделирование в задачах одномерного или плоского раскроя. Сравнение плана раскроя с оптимальным планом, полученным методами линейного целочисленного программирования.

· Транспортные модели и их варианты. Сравнение плана перевозок, полученного методом имитационного моделирования, с оптимальным планом, полученным методом потенциалов.

· Применение метода имитационного моделирования к решению оптимизационных задач на графах.

· Определение объемов производства как задача многокритериальной оптимизации. Использование метода имитационного моделирования для нахождения множества достижимости и множества Парето.

· Метод имитационного моделирования в задачах календарного планирования. Получение рекомендаций по составлению рационального расписания.

· Исследование характеристик информационных систем и каналов связи как систем массового обслуживания методом имитационного моделирования.

· Построение имитационных моделей при организации запросов в базах данных.

· Применение метода имитационного моделирования для решения задачи управления запасами с постоянным, переменным и случайным спросом.

· Исследование работы цеха рубительных машин методом имитационного моделирования.

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Техническая система S состоит из трех элементов, схема соединения которых приведена на рис.1. Времена безотказной работы X 1 , X 2 , X 3 элементов системы являются непрерывными случайными величинами с известными законами распределения вероятностей. Внешняя среда E оказывает воздействие на работу систему в виде случайной величины V с известным дискретным распределением вероятностей.

Требуется оценить надежность системы S методом имитационного моделирования на ЭВМ с последующей обработкой результатов эксперимента. Ниже приводится последовательность выполнения работы.

1. Разработка алгоритмов разыгрывания случайных величин X 1 , X 2 , X 3 и V с использованием генераторов случайных чисел, содержащихся в математических пакетах, например, в Microsoft Excel или в StatGraphics.

2. Определение времени безотказной работы системы Y в зависимости от времен безотказной работы X 1 , X 2 , X 3 элементов на основе структурной схемы расчета надежности.

3. Определение времени безотказной работы системы с учетом влияния внешней среды в соответствии с формулой Z=Y/(1+0,1V).

4. Построение моделирующего алгоритма, имитирующего работу системы S и учитывающего возможность отказа элементов и случайные воздействия внешней среды E. Реализация полученного алгоритма на ЭВМ и создание файла со значениями случайных величин X 1 , X 2 , X 3 , V, Y и Z. Число опытов для машинного эксперимента принять равным 100.

5. Статистическая обработка полученных результатов. С этой целью необходимо

Данные для случайной величины Z разбить на 10 групп и сформировать статистический ряд, содержащий границы и середины частичных интервалов, соответствующие частоты, относительные частоты, накопленные частоты и накопленные относительные частоты;

Для величины Z построить полигон и кумуляту частот, построить гистограмму по плотностям относительных частот;

Для величин X 1 , X 2 , X 3 , V установить их соответствие заданным законам распределения, используя критерий c 2 ;

Для случайной величины Z рассмотреть три непрерывных распределения (равномерное, нормальное, гамма), изобразить на гистограмме для Z плотности этих распределений;

С помощью критерия c 2 выполнить проверку справедливости гипотезы о соответствии статистических данных выбранным распределениям, уровень значимости при подборе подходящего распределения принять равным 0.05.

6. Записать функцию плотности распределения времени безотказной работы Z системы, определить математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Z. Определить основные характеристики надежности системы: среднюю наработку до отказа T 1 и вероятность безотказной работы P(t) в течение времени t. Найти вероятность, что система не откажет за время T 1 .

Варианты заданий выдаются из табл.1 индивидуально каждому студенту. Обозначения случайных величин содержатся по тексту в п.2 и 3. Структурные схемы расчета надежности в соответствии с их номерами приведены на рис.1.

Таблица 1

Варианты заданий

Вариант X 1 X 2 X 3 V Номер схемы
LN(1,5;2) LN(1,5;2) E(2;0,1) B(5;0,7)
U(18;30) U(18;30) N(30;5) G(0,6)
W(1,5;20) W(1,5;20) U(10;20) П(2)
Exp(0,1) Exp(0,1) W(2;13) B(4;0,6)
N(18;2) N(18;2) Exp(0,05) G(0,7)
E(3;0,2) E(3;0,2) LN(2;0,5) П(0,8)
W(2,1;24) W(2,1;24) E(3;0,25) B(3;0,5)
Exp(0,03) Exp(0,03) N(30;0,4) G(0,8)
U(12;14) U(12;14) W(1,8;22) П(3,1)
N(13;3) N(13;3) W(2;18) B(4;0,4)
LN(2;1) LN(2;1) Exp(0,04) G(0,9)
E(2;0,1) E(2;0,1) LN(1;2) П (4,8)
W(1,4;20) W(1,4;20) U(30;50) B(3;0,2)
Exp(0,08) Exp(0,08) LN(2;1,5) G(0,3)
U(25;30) U(25;30) N(30;1,7) П(2,8)
N(17;4) N(17;4) E(2;0,04) B(2;0,3)
LN(3;0,4) LN(3;0,4) Exp(0,02) G(0,4)
E(2;0,15) E(2;0,15) W(2,3;24) П(1,6)
W(2,3;25) W(2,3;25) U(34;40) B(4;0,9)
Exp(0,02) Exp(0,02) LN(3,2;1) G(0,7)
U(15;22) U(15;22) N(19;2,2) П(0,5)
N(15;1) N(15;1) E(3;0,08) B(4;0,6)
LN(2;0,3) LN(2;0,3) Exp(0,02) G(0,5)
E(3;0,5) E(3;0,5) W(3;2) П(3,6)
W(1,7;19) W(1,7;19) U(15;20) B(5;0,7)
Exp(0,06) Exp(0,06) LN(2;1,6) G(0,2)
U(15;17) U(15;17) N(12;4) П(4,5)
N(29;2) N(29;2) E(2;0,07) B(2;0,7)
LN(1,5;1) LN(1,5;1) Exp(0,08) G(0,7)
E(2;0,09) E(2;0,09) W(2,4;25) П(2,9)

На рис.1 имеется три вида соединения элементов: последовательное, параллельное (постоянно включенный резерв) и резервирование замещением.

Время до отказа системы, состоящей из последовательно соединенных элементов, равно наименьшему из времен до отказа элементов. Время до отказа системы с постоянно включенным резервом равно наибольшему из времен до отказа элементов. Время до отказа системы с резервом замещением, равно сумме времен до отказа элементов.



Схема 1. Схема 2.


Схема 3. Схема 4.


Схема 5. Схема 6.

Схема 7. Схема 8.

Метод обратных функций

Пусть требуется разыграть непрерывную случай­ную величину X , т. е. получить последовательность ее возможных значений x i (i = 1,2, ...), зная функцию распределения F (х ).

Теорема. Если r i ,-случайное число, то возможное зна­чение x i разыгрываемой непрерывной случайной величины Х с заданной функцией распределения F (х ), соответствующее r i , является корнем уравнения

F (х i )= r i . (»)

Доказательство. Пусть выбрано случайное число r i (0≤r i <1). Так как в интервале всех возможных зна­чений Х функция распределения F (х ) монотонно возра­стает от 0 до 1, то в этом интервале существует, причем только одно, такое значение аргумента х i , при котором функция распределения примет значение r i . Другими словами, уравнение (*) имеет единственное решение

х i = F - 1 (r i ),

где F - 1 - функция, обратная функции у= F (х ).

Докажем теперь, что корень х i уравнения (*) есть возможное значение такой непрерывной случайной вели­чины (временно обозначим ее через ξ , а потом убедимся, что ξ=Х ). С этой целью докажем, что вероятность попа­дания ξ в интервал, например (с, d ), принадлежащий интервалу всех возможных значений X , равна прираще­нию функции распределения F (х ) на этом интервале:

Р (с< ξ < d )= F (d )- F (с ).

Действительно, так как F (х )- монотонно возрастаю­щая функция в интервале всех возможных значений X, то в этом интервале большим значениям аргумента соот­ветствуют большие значения функции, и обратно. Поэтому, если с <х i < d , то F (c )< r i < F (d ), и обратно [учтено, что в силу (*) F (х i )=r i ].

Из этих неравенств следует, чтоесли случайная величина ξ заключена в интервале

с< ξ < d , ξ (**)

то случайная величина R заключена в интервале

F (с )< R < F (d ), (***)

и обратно. Таким образом, неравенства(**) и (***) рав­носильны, а, значит, и равновероятны:

Р (с < ξ< d )[F (с )< R < F (d )]. (****)

Так как величина R распределена равномерно в ин­тервале (0,1), то вероятность попадания R в некоторый интервал, принадлежащий интервалу (0,1), равна его длине (см. гл. XI, § 6, замечание). В частности,

Р [F (с )< R < F (d ) ] = F (d ) - F (с ).

Следовательно, соотношение (****) можно записать в виде

Р (с < ξ< d )= F (d ) - F (с ).

Итак, вероятность попадания ξ в интервал (с, d ) равна приращению функции распределения F (х ) на этом интер­вале, а это означает, что ξ=Х. Другими словами, числа х i , определяемые формулой (*), есть возможные значения величины Х с заданной функцией распределения F (х ), что и требовалось доказать.

Правило 1. х i , непрерывной случайной величины X, зная ее функцию распределения F (х ), надо выбрать случайное число r i приравнять его функции распределения и решить отно­сительно х i , полученное уравнение

F (х i )= r i .

Замечание 1. Если решить это уравнение в явном видене удается, то прибегают к графическим или численным методам.

Пример I. Разыграть 3 возможных значения непрерывной слу­чайной величины X, распределенной равномерно в интервале (2, 10).

Решение. Напишем функцию распределения величины X, рас­пределенной равномерно в интервале (а, b ) (см. гл. XI, § 3, пример):

F (х )= (х-а )/ (b ).

По условию, а = 2, b =10, следовательно,

F (х )= (х- 2)/ 8.

Используя правило настоящего параграфа, напишем уравнение для отыскания возможных значений х i , для чего приравняем функцию распределения случайному числу:

(х i -2 )/8= r i .

Отсюда х i =8 r i + 2.

Выберем 3 случайных числа, например, r i =0,11, r i =0,17, r i =0,66. Подставим эти числа в уравнение, разрешенное относительно х i , в итоге получим соответствующие возможные значенияX : х 1 =8·0,11+2==2,88; х 2 =1.36; х 3 = 7,28.

Пример 2. Непрерывная случайная величина Х распределенапопоказательному закону, заданному функцией распределения (параметр λ > 0 известен)

F (х )= 1 - е - λ х (х>0 ).

Требуется найти явную формулу для разыгрывания возможных зна­чений X.

Решение. Используя правило настоящего параграфа, напишем уравнение

1 - е - λ х i

Решим это уравнение относительно х i :

е - λ х i = 1 - r i , или - λ х i = ln (1 - r i ).

х i =1п (1 r i )/λ.

Случайное число r i заключено в интервале (0,1); следовательно, число 1 - r i , также случайное и принадлежит интервалу (0,1). Дру­гими словами, величины R и 1 - R распределены одинаково. Поэтому для отыскания х i можно воспользоваться более простой формулой:

x i =- ln r i /λ.

Замечание 2. Известно, что (см. гл. XI, §3)

В частности,

Отсюда следует, что если известна плотность вероятности f (x ), то для разыгрывания Х можно вместоуравнений F (x i )=r i решить относительно x i уравнение

Правило 2. Для того чтобы найти возможное значение х i (непрерывной случайной величины X, зная ее плот­ность вероятности f (x ) надо выбрать случайное число r i и решить относительно х i , уравнение

или уравнение

где а- наименьшее конечное возможное значение X.

Пример 3. Задана плотность вероятности непрерывной случайной величины Х f (х )(1-λх /2) в интервале (0; 2/λ); вне этого интер­вала f (х )= 0. Требуется найти явную формулу для разыгрывания возможных значений X.

Решение. Напишем в соответствии с правилом 2 уравнение

Выполнив интегрирование и решив полученное квадратное уравнение относительно х i , окончательно получим