Химия

Методы решения однородных систем линейных уравнений. Решение однородных систем линейных уравнений. Контроль освоения пройденного материала

Методы решения однородных систем линейных уравнений. Решение однородных систем линейных уравнений. Контроль
освоения пройденного материала

Системы линейных уравнений, у которой все свободные члены равны нулю, называются однородными :

Любая однородная система всегда совместна, поскольку всегда обладает нулевым (тривиальным ) решением. Возникает вопрос, при каких условиях однородная система будет иметь нетривиальное решение.

Теорема 5.2. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг основной матрицы меньше числа ее неизвестных.

Следствие . Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель основной матрицы системы не равен нулю.

Пример 5.6. Определить значения параметра l, при которых система имеет нетривиальные решения, и найти эти решения:

Решение . Эта система будет иметь нетривиальное решение тогда, когда определитель основной матрицы равен нулю:

Таким образом, система нетривиальна, когда l=3 или l=2. При l=3 ранг основной матрицы системы равен 1. Тогда оставляя только одно уравнение и полагая, что y =a и z =b , получим x=b-a , т.е.

При l=2 ранг основной матрицы системы равен 2. Тогда, выбирая в качестве базисного минор:

получим упрощенную систему

Отсюда находим, что x=z /4, y=z /2. Полагая z =4a , получим

Множество всех решений однородной системы обладает весьма важным линейным свойством : если столбцы X 1 и X 2 - решения однородной системы AX = 0 , то всякая их линейная комбинация aX 1 + bX 2 также будет решением этой системы . Действительно, поскольку AX 1 = 0 и AX 2 = 0 , то A (aX 1 + bX 2) = aAX 1 + bAX 2 = a · 0 + b · 0 = 0. Именно вследствие этого свойства, если линейная система имеет более одного решения, то этих решений будет бесконечно много.

Линейно независимые столбцы E 1 , E 2 , E k , являющиеся решениями однородной системы, называется фундаментальной системой решений однородной системы линейных уравнений, если общее решение этой системы можно записать в виде линейной комбинации этих столбцов:

Если однородная система имеет n переменных, а ранг основной матрицы системы равен r , то k = n-r .

Пример 5.7. Найти фундаментальную систему решений следующей системы линейных уравнений:

Решение . Найдем ранг основной матрицы системы:

Таким образом, множество решений данной системы уравнений образует линейное подпространство размерности n - r = 5 - 2 = 3. Выберем в качестве базисного минор

Тогда оставляя только базисные уравнения (остальные будут линейной комбинацией этих уравнений) и базисные переменные (осталь-ные, так называемые свободные, переменные переносим вправо), по-лучим упрощенную систему уравнений:

Полагая, x 3 = a , x 4 = b , x 5 = c , находим


Полагая a = 1, b = c = 0, получим первое базисное решение; полагая b = 1, a = c = 0, получим второе базисное решение; полагая c = 1, a = b = 0, получим третье базисное решение. В результате, нормальная фундаментальная система решений примет вид

С использованием фундаментальной системы общее решение однородной системы можно записать в виде

X = aE 1 + bE 2 + cE 3 . à

Отметим некоторые свойства решений неоднородной системы линейных уравнений AX=B и их взаимосвязь соответствующей однородной системой уравнений AX = 0.

Общее решение неоднородной системы равно сумме общего решения соответствующей однородной системы AX = 0 и произвольного частного решения неоднородной системы . Действительно, пусть Y 0 произвольное частное решение неоднородной системы, т.е. AY 0 = B , и Y - общее решение неоднородной системы, т.е. AY = B . Вычитая одно равенство из другого, получим
A (Y-Y 0) = 0, т.е. Y - Y 0 есть общее решение соответствующей однородной системы AX =0. Следовательно, Y - Y 0 = X , или Y = Y 0 + X . Что и требовалось доказать.

Пусть неоднородная система имеет вид AX = B 1 + B 2 . Тогда общее решение такой системы можно записать в виде X = X 1 + X 2 , где AX 1 = B 1 и AX 2 = B 2 . Это свойство выражает универсальное свойство вообще любых линейных систем (алгебраических, дифференциальных, функциональных и т.д.). В физике это свойство называется принципом суперпозиции , в электро- и радиотехнике - принципом наложения . Например, в теории линейных электрических цепей ток в любом контуре может быть получен как алгебраическая сумма токов, вызываемых каждым источником энергии в отдельности.

Линейное уравнение называется однородным , если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.

Теорема . Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных .

Доказательство : Допустим, система, ранг которой равен, имеет ненулевое решение. Очевидно, что не превосходит . В случае система имеет единственное решение. Поскольку система однородных линейных уравнений всегда имеет нулевое решение, то именно нулевое решение и будет этим единственным решением. Таким образом, ненулевые решения возможны только при .

Следствие 1 : Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Доказательство : Если у системы уравнений , то ранг системы не превышает числа уравнений , т.е. . Таким образом, выполняется условие и, значит, система имеет ненулевое решение.

Следствие 2 : Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.

Доказательство : Допустим, система линейных однородных уравнений, матрица которой с определителем , имеет ненулевое решение. Тогда по доказанной теореме , а это значит, что матрица вырожденная, т.е. .

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.

Однородная система линейных алгебраических уравнений .

Система m линейных ур-ий с n переменными называется системой линейных однородных уравнений, если все свободные члены равны 0. Система линейных однородных ур-ий всегда совместна, т.к. она всегда имеет, по крайней мере, нулевое решение. Система линейных однородных ур-ий имеет ненулевое решение тогда и только тогда, когда ранг её матрицы коэффициентов при переменных меньше числа переменных, т.е. при rang A (n. Всякая лин. комбинация

решений системы лин. однородн. ур-ий также является решением этой системы.

Система лин.независимых решений е1, е2,…,еk называется фундаментальной, если каждое решение системы является линейной комбинацией решений. Теорема: если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений меньше числа переменных n, то всякая фундаментальная система решений системы состоит из n-r решений. Поэтому общее решение системы лин. однордн. ур-ий имеет вид: с1е1+с2е2+…+сkеk, где е1, е2,…, еk – любая фундаментальная система решений, с1, с2,…,сk – произвольные числа и k=n-r. Общее решение системы m линейных ур-ий с n переменными равно сумме

общего решения соответствующей ей системы однородн. линейных ур-ий и произвольного частного решения этой системы.

7.Линейные пространства. Подпространства. Базис, размерность. Линейная оболочка. Линейное пространство называется n-мерным , если в нем существует система из линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число называется размерностью (числом измерений) линейного пространства и обозначается . Другими словами, размерность пространства - это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве найдется система, состоящая из линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность линейно независимых векторов (базисных векторов ).

Теорема 8.1 о разложении вектора по базису. Если - базис n-мерного линейного пространства , то любой вектор может быть представлен в виде линейной комбинации базисных векторов:

V=v1*e1+v2*e2+…+vn+en
и притом единственным образом, т.е. коэффициенты определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства равна . Система векторов линейно независима (это базис). После присоединения к базису любого вектора , получаем линейно зависимую систему (так как это система состоит из векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

Однородная система всегда совместна и имеет тривиальное решение
. Для существования нетривиального решения необходимо, чтобы ранг матрицыбыл меньше числа неизвестных:

.

Фундаментальной системой решений однородной системы
называют систему решений в виде векторов-столбцов
, которые соответствуют каноническому базису, т.е. базису, в котором произвольные постоянные
поочередно полагаются равными единице, тогда как остальные приравниваются нулю.

Тогда общее решение однородной системы имеет вид:

где
- произвольные постоянные. Другими словами, общее решение есть линейная комбинация фундаментальной системы решений.

Таким образом, базисные решения могут быть получены из общего решения, если свободным неизвестным поочередно придавать значение единицы, полагая все остальные равные нулю.

Пример . Найдем решение системы

Примем , тогда получим решение в виде:

Построим теперь фундаментальную систему решений:

.

Общее решение запишется в виде:

Решения системы однородных линейных уравнений имеют свойства:

Другими словами, любая линейная комбинация решений однородной системы есть опять решение.

Решение систем линейных уравнений методом Гаусса

Решение систем линейных уравнений интересует математиков несколько столетий. Первые результаты были получены в XVIII веке. В 1750 г. Г.Крамер (1704 –1752) опубликовал свои труды по детерминантам квадратных матриц и предложил алгоритм нахождения обратной матрицы. В 1809 г. Гаусс изложил новый метод решения, известный как метод исключения.

Метод Гаусса, или метод последовательного исключения неизвестных, заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида. Такие системы позволяют последовательно находить все неизвестные в определенном порядке.

Предположим, что в системе (1)
(что всегда возможно).

(1)

Умножая поочередно первое уравнение на так называемые подходящие числа

и складывая результат умножения с соответствующими уравнениями системы, мы получим эквивалентную систему, в которой во всех уравнениях, кроме первого, будет отсутствовать неизвестная х 1

(2)

Умножим теперь второе уравнение системы (2) на подходящие числа, полагая, что

,

и складывая его с нижестоящими, исключим переменную из всех уравнений, начиная с третьего.

Продолжая этот процесс, после
шага мы получим:

(3)

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство противоречиво и система (1) несовместна. Обратно, для любой совместной системы числа
равны нулю. Число- это ни что иное, как ранг матрицы системы (1).

Переход от системы (1) к (3) называется прямым ходом метода Гаусса, а нахождение неизвестных из (3) – обратным ходом .

Замечание : Преобразования удобнее производить не с самими уравнениями, а с расширенной матрицей системы (1).

Пример . Найдем решение системы

.

Запишем расширенную матрицу системы:

.

Прибавим к строкам 2,3,4 первую, умноженную на (-2), (-3), (-2) соответственно:

.

Поменяем строки 2 и 3 местами, затем в получившейся матрице добавим к строке 4 строку 2, умноженную на :

.

Прибавим к строке 4 строку 3, умноженную на
:

.

Очевидно, что
, следовательно, система совместна. Из полученной системы уравнений

находим решение обратной подстановкой:

,
,
,
.

Пример 2. Найти решение системы:

.

Очевидно, что система несовместна, т.к.
, а
.

Достоинства метода Гаусса :

    Менее трудоемкий, чем метод Крамера.

    Однозначно устанавливает совместность системы и позволяет найти решение.

    Дает возможность определить ранг любых матриц.

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана»

(КФ МГТУ им. Н.Э. Баумана)

Влайков Н.Д.

Решение однородных СЛАУ

Методические указания для проведения упражнений

по курсу аналитической геометрии

Калуга 2011г.

Цели занятия стр.4

План занятия стр.4

Необходимые теоретические сведения стр.5

Практическая часть стр.10

Контроль освоения пройденного материала стр.13

Домашнее задание стр.14

Количество часов: 2

Цели занятия:

    Систематизировать полученные теоретические знания о видах СЛАУ и способах их решения.

    Получить навыки решения однородных СЛАУ.

План занятия:

    Кратко изложить теоретический материал.

    Решить однородную СЛАУ.

    Найти фундаментальную систему решений однородной СЛАУ.

    Найти частное решение однородной СЛАУ.

    Сформулировать алгоритм решения однородной СЛАУ.

    Проверить выполнение текущего домашнего задания.

    Провести проверочную работу.

    Представить тему следующего семинара.

    Выдать текущее домашнее задание.

Необходимые теоретические сведения.

Ранг матрицы.

Опр. Рангом матрицы называют число, которое равно максимальному порядку среди ее ненулевых миноров. Ранг матрицы обозначают .

Если квадратная матрица невырождена, то ранг равен ее порядку. Если квадратная матрица вырождена, то ее ранг меньше ее порядка.

Ранг диагональной матрицы равен количеству ее ненулевых диагональных элементов.

Теор. При транспонировании матрицы ее ранг не меняется, т.е.
.

Теор. Ранг матрицы не меняется при элементарных преобразования ее строк и столбцов.

Теорема о базисном миноре.

Опр. Минор
матрицы называют базисным, если выполнены два условия:

а) он не равен нулю;

б) его порядок равен рангу матрицы .

Матрица может иметь несколько базисных миноров.

Строки и столбцы матрицы , в которых расположен выбранный базисный минор, называют базисными.

Теор. Теорема о базисном миноре. Базисные строки (столбцы) матрицы , соответствующие любому ее базисному минору
, линейно независимы. Любые строки (столбцы) матрицы , не входящие в
, являются линейными комбинациями базисных строк (столбцов).

Теор. Для любой матрицы ее ранг равен максимальному количеству ее линейно независимых строк (столбцов).

Вычисление ранга матрицы. Метод элементарных преобразований.

С помощью элементарных преобразований строк любую матрицу можно привести к ступенчатому виду. Ранг же ступенчатой матрицы равен количеству ненулевых строк. Базисным в ней является минор, расположенный на пересечении ненулевых строк со столбцами, соответствующими первым слева ненулевым элементам в каждой из строк.

СЛАУ. Основные определения.

Опр. Система

(15.1)

Числа называют коэффициентами СЛАУ. Числа
называют свободными членами уравнений.

Запись СЛАУ в виде (15.1) называют координатной.

Опр. СЛАУ называют однородной, если
. Иначе ее называют неоднородной.

Опр. решением СЛАУ называют такой набор значений неизвестных, при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ так же называют ее частным решением.

Решить СЛАУ – значит решить две задачи:

Выяснить, имеет ли СЛАУ решения;

Найти все решения, если они существуют.

Опр. СЛАУ называют совместной, если она имеет хотя бы одно решение. В противном случае ее называют несовместной.

Опр. Если СЛАУ (15.1) имеет решение, и притом единственное, то ее называют определенной, а если решение не единственное – то неопределенной.

Опр. Если в уравнении (15.1)
,СЛАУ называют квадратной.

Формы записи СЛАУ.

Кроме координатной формы (15.1) записи СЛАУ часто используют и друге ее представления.

(15.2)

Соотношение называют векторной формой записи СЛАУ.

Если же взять за основу произведение матриц, то СЛАУ (15.1) можно записать так:

(15.3)

или
.

Запись СЛАУ (15.1) в виде (15.3) называют матричной.

Однородные СЛАУ.

Однородная система
линейных алгебраических уравнений с неизвестными представляет собой систему вида

Однородные СЛАУ всегда совместны, поскольку всегда имеется нулевое решение.

Критерий существования ненулевого решения. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы ее матрица была вырождена.

Теор. Если столбцы
,
, …,
- решения однородной СЛАУ, то и любая их линейная комбинация также является решением этой системы.

Следствие . Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечное множество решений.

Естественно попытаться найти такие решения
,
, …,
системы, чтобы любое другое решение представлялось в виде их линейной комбинации и притом единственным образом.

Опр. Любой набор из
линейно независимых столбцов
,
, …,
, являющихся решениями однородной СЛАУ
, где - число неизвестных, а - ранг ее матрицы , называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных уравнений в матрице системы будем фиксировать базисный минор. Базисному минору будут соответствовать базисные столбцы и, следовательно, базисные неизвестные. Остальные неизвестные будем называть свободными.

Теор. О структуре общего решения однородной СЛАУ. Если
,
, …,
- произвольная фундаментальная система решений однородной СЛАУ
, то любое ее решение можно представить в виде

Где , …,- некоторые постоянные.

Т.о. общее решение однородной СЛАУ имеет вид

Практическая часть.

    Рассмотреть возможные множества решений следующих видов СЛАУ и их графическую интерпретацию.

;
;
.

    Рассмотреть возможность решения данных систем по формулам Крамера и матричным методом.

    Изложить суть метода Гаусса.

    Решить следующие задачи.

Пример 1. Решить однородную СЛАУ. Найти ФСР.

.

Запишем матрицу системы и приведем ее к ступенчатому виду.

.

система будет иметь бесконечно много решений. ФСР будет состоять из
столбцов.

Отбросим нулевые строки и снова запишем систему:

.

Будем считать базисным минор стоящий в левом верхнем углу. Т.о.
- базисные неизвестные, а
- свободные. Выразим
через свободные
:

;

Положим
.

Окончательно имеем:

- координатная форма ответа, или

- матричная форма ответа, или

- векторная форма ответа (вектор - столбцы являются столбцами ФСР).

Алгоритм решения однородной СЛАУ.

Найти ФСР и общее решение следующих систем:

2.225(4.39)

. Отв.:

2.223(2.37)

. Отв.:

2.227(2.41)

. Отв.:

Решить однородную СЛАУ:

. Отв.:

Решить однородную СЛАУ:

. Отв.:

Представление темы следующего семинара.

Решение систем линейных неоднородных уравнений.

Контроль освоения пройденного материала.

Проверочная работа 3 - 5 минут. Участвует 4 студента с нечетными номерами по журналу, начиная с №10

Выполнить действия:

;
;

Выполнить действия:

Вычислить определитель:

Выполнить действия:

не определено

Выполнить действия:

Найти матрицу обратную данной:

Вычислить определитель:

Домашнее задание:

1. Решить задачи:

№ 2.224, 2.226, 2.228, 2.230, 2.231, 2.232.

2.Проработать лекции на темы:

Системы линейных алгебраических уравнений (СЛАУ). Координатная, матричная и векторная формы записи. Критерий Кронекера - Капелли совместности СЛАУ. Неоднородные СЛАУ. Критерий существования ненулевого решения однородной СЛАУ. Свойства решений однородной СЛАУ. Фундаментальная система решений однородной СЛАУ, теорема о ее существовании. Нормальная фундаментальная система решений. Теорема о структуре общего решения однородной СЛАУ. Теорема о структуре общего решения неоднородной СЛАУ.

Рассмотрим однородную систему m линейных уравнений с n переменными:

(15)

Система однородных линейных уравнений всегда совместна, т.к. она всегда имеет нулевое (тривиальное) решение (0,0,…,0).

Если в системе (15) m=n и , то система имеет только нулевое решение, что следует из теоремы и формул Крамера.

Теорема 1 . Однородная система (15) имеет нетривиальное решение тогда и только тогда, когда ранг ее матрицы меньше числа переменных,т.е. r (A )< n .

Доказательство . Существование нетривиального решения системы (15) эквивалентно линейной зависимости столбцов матрицы системы (т.е. существуют такие числа х 1 , x 2 ,…,x n , не все равные нулю, что справедливы равенства (15)).

По теореме о базисном миноре столбцы матрицы линейно зависимы , когда не все столбцы этой матрицы являются базисными, т.е. , когда порядок r базисного минора матрицы меньше числа n ее столбцов. Ч.т.д.

Следствие . Квадратная однородная система имеет нетривиальные решения , когда |А|=0.

Теорема 2 . Если столбцы х (1) ,х (2) ,…,х (s) решения однородной системы АХ=0, то любая их линейная комбинация так же является решением этой системы.

Доказательство . Рассмотрим любую комбинацию решений:

Тогда АХ=А()===0. ч.т.д.

Следствие 1. Если однородная система имеет нетривиальное решение, то она имеет бесконечно много решений.

Т.о. необходимо найти такие решения х (1) ,х (2) ,…,х (s) системы Ах=0, чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом.

Определение. Система k=n-r (n –количество неизвестных в системе, r=rg A) линейно независимых решений х (1) ,х (2) ,…,х (k) системы Ах=0 называется фундаментальной системой решений этой системы.

Теорема 3 . Пусть дана однородная система Ах=0 с n неизвестными и r=rg A. Тогда существует набор из k=n-r решений х (1) ,х (2) ,…,х (k) этой системы, образующих фундаментальную систему решений.

Доказательство . Не ограничивая общности, можно считать, что базисный минор матрицы А расположен в верхнем левом углу. Тогда, по теореме о базисном миноре, остальные строки матрицы А являются линейными комбинациями базисных строк. Это означает, что если значения х 1 ,х 2 ,…,x n удовлетворяют первым r уравнениям т.е. уравнениям, соответствующим строкам базисного минора), то они удовлетворяют и другим уравнениям. Следовательно, множество решений системы не изменится, если отбросить все уравнения начиная с (r+1)-го. Получим систему:

Перенесем свободные неизвестные х r +1 ,х r +2 ,…,x n в правую часть, а базисные х 1 ,х 2 ,…,x r оставим в левой:

(16)

Т.к. в этом случае все b i =0, то вместо формул

c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13), получим:

c j =-(c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r (13)

Если задать свободным неизвестным х r +1 ,х r +2 ,…,x n произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., любое решение однородной СЛАУ однозначно определяется значениями свободных неизвестных х r +1 ,х r +2 ,…,x n . Рассмотрим следующие k=n-r серий значений свободных неизвестных:

1, =0, ….,=0,

1, =0, ….,=0, (17)

………………………………………………

1, =0, ….,=0,

(Номер серии указан верхним индексом в скобках, а серии значений выписаны в виде столбцов. В каждой серии =1, еслиi=j и =0, еслиij.

i-й серии значений свободных неизвестных однозначно соответствуют значения ,,…,базисных неизвестных. Значения свободных и базисных неизвестных в совокупности дают решения системы (17).

Покажем, что столбцы е i =,i=1,2,…,k (18)

образуют фундаментальную систему решений.

Т.к. эти столбцы по построению являются решениями однородной системы Ах=0 и их количество равно k, то остается доказать линейную независимость решений (16). Пусть есть линейная комбинация решенийe 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)), равная нулевому столбцу:

1 e 1 +  2 e 2 +…+  k e k ( 1 х (1) + 2 х (2) +…+ k х (k) =0)

Тогда левая часть этого равенства является столбцом, компоненты которого с номерами r+1,r+2,…,n равны нулю. Но (r+1)-я компоненты равна  1 1+ 2 0+…+ k 0= 1 . Аналогично, (r+2)-я компонента равна  2 ,…, k-я компонента равна  k . Поэтому  1 =  2 = …= k =0, что и означает линейную независимость решений e 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)).Ч.т.д.

Построенная фундаментальная система решений (18) называется нормальной . В силу формулы (13) она имеет следующий вид:

(20)

Следствие 2 . Пусть e 1 , e 2 ,…, e k -нормальная фундаментальная система решений однородной системы, тогда множество всех решений можно описать формулой:

х=с 1 e 1 +с 2 e 2 +…+с k e k (21)

где с 1 ,с 2 ,…,с k – принимают произвольные значения.

Доказательство . По теореме 2 столбец (19) является решением однородной системы Ах=0. Остается доказать, что любое решение этой системы можно представить в виде (17). Рассмотрим столбецх =у r +1 e 1 +…+y n e k . Этот столбец совпадает со столбцом у по элементам с номерами r+1,…,n и является решением (16). Поэтому столбцы х и у совпадают, т.к. решения системы (16) определяются однозначно набором значений ее свободных неизвестных x r +1 ,…,x n , а у столбцов у и х эти наборы совпадают. Следовательно, у =х = у r +1 e 1 +…+y n e k , т.е. решение у является линейной комбинацией столбцов e 1 ,…,y n нормальной ФСР. Ч.т.д.

Доказанное утверждение справедливо не только для нормальной ФСР, но и для произвольной ФСР однородной СЛАУ.

Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r - общее решение системы линейных однородных уравнений

Где Х 1 ,Х 2 ,…,Х n - r – любая фундаментальная система решений,

c 1 ,c 2 ,…,с n - r – произвольные числа.

Пример . (с. 78)

Установим связь между решениями неоднородной СЛАУ (1) и соответствующей ей однородной СЛАУ(15)

Теорема 4 . Сумма любого решения неоднородной системы (1) и соответствующей ей однородной системы (15) является решением системы (1).

Доказательство . Если c 1 ,…,c n – решение системы (1), а d 1 ,…,d n - решение системы (15), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 +d 1 ,…,c n +d n , получим:

B i +0=b i ч.т.д.

Теорема 5 . Разность двух произвольных решений неоднородной системы (1) является решением однородной системы (15).

Доказательство . Если c 1 ,…,c n и c 1 ,…,c n – решения системы (1), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 -с 1 ,…,c n -с n , получим:

B i -b i =0 ч.т.д.

Из доказанных теорем следует, что общее решение системы m линейных однородных уравнений с n переменными равно сумме общего решения соответствующей ей системы однородных линейных уравнений (15) и произвольного числа частного решения этой системы (15).

Х неод. общ. одн. част. неодн. (22)

В качестве частного решения неоднородной системы естественно взять то его решение, которое получается, если в формулах c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13) положить равными нулю все числа c r +1 ,…,c n ,т.е.

Х 0 =(,…,,0,0,…,0) (23)

Складывая это частное решение с общим решением Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r соответствующей однородной системы, получаем:

Х неод. 0 1 Х 1 2 Х 2 +…+С n - r Х n - r (24)

Рассмотрим систему двух уравнений с двумя переменными:

в которой хотя бы один из коэф. a ij 0.

Для решения исключим х 2 , умножив первое уравнение на а 22 , а второе – на (-а 12) и сложив их: Исключим х 1 , умножив первое уравнение на (-а 21), а второе – на а 11 и сложив их: Выражение в скобках – определитель

Обозначив ,, тогда система примет вид:, т.о., если, то система имеет единственное решение:,.

Если Δ=0, а (или), то система несовместна, т.к. приводится к видуЕсли Δ=Δ 1 =Δ 2 =0, то система неопределенная, т.к. приводится к виду