Химия

Прямая задана двумя прямыми составить каноническое уравнение. Каноническое уравнение прямой на плоскости - теория, примеры, решение задач. Уравнение прямой в отрезках

Прямая задана двумя прямыми составить каноническое уравнение. Каноническое уравнение прямой на плоскости - теория, примеры, решение задач. Уравнение прямой в отрезках

Рассмотрим решение примера.

Пример.

Найдите координаты любой точки прямой, заданной в пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Перепишем систему уравнений в следующем виде

В качестве базисного минора основной матрицы системы возьмем отличный от нуля минор второго порядка , то есть, z – свободная неизвестная переменная. Перенесем слагаемые, содержащие z , в правые части уравнений: .

Примем , где - произвольное действительное число, тогда .

Решим полученную систему уравнений :

Таким образом, общее решение системы уравнений имеет вид , где .

Если взять конкретное значение параметра , то мы получим частное решение системы уравнений, которое нам дает искомые координаты точки, лежащей на заданной прямой. Возьмем , тогда , следовательно, - искомая точка прямой.

Можно выполнить проверку найденных координат точки, подставив их в исходые уравнения двух пересекающихся плоскостей:

Ответ:

Направляющий вектор прямой, по которой пересекаются две плоскости.

В прямоугольной системе координат от прямой линии неотделим направляющий вектор прямой . Когда прямая а в прямоугольной системе координат в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей и , то координаты направляющего вектора прямой не видны. Сейчас мы покажем, как их определять.

Мы знаем, что прямая перпендикулярна к плоскости, когда она перпендикулярна любой прямой, лежащей в этой плоскости. Тогда нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в этой плоскости. Этими фактами и воспользуемся при нахождении направляющего вектора прямой.

Прямая а лежит как в плоскости , так и в плоскости . Следовательно, направляющий вектор прямой а перпендикулярен и нормальному вектору плоскости , и нормальному вектору плоскости . Таким образом, направляющим вектором прямой а является и :

Множество всех направляющих векторов прямой а мы можем задать как , где - параметр, принимающий любые действительные значения, отличные от нуля.

Пример.

Найдите координаты любого направляющего вектора прямой, которая задана в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Нормальными векторами плоскостей и являются векторы и соответственно. Направляющим вектором прямой, являющейся пересечением двух заданных плоскостей, примем векторное произведение нормальных векторов:

Ответ:

Переход к параметрическим и каноническим уравнениям прямой в пространстве.

Бывают случаи, в которых использование уравнений двух пересекающихся плоскостей для описания прямой не совсем удобно. Некоторые задачи проще решаются, если известны канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , где x 1 , y 1 , z 1 - координаты некоторой точки прямой, a x , a y , a z - координаты направляющего вектора прямой, а - параметр, принимающий произвольные действительные значения. Опишем процесс перехода от уравнений прямой вида к каноническим и параметрическим уравнениям прямой в пространстве.

В предыдущих пунктах мы научились находить координаты некоторой точки прямой, а также координаты некоторого направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей. Этих данных достаточно, чтобы записать и канонические и параметрические уравнения этой прямой в прямоугольной системе координат в пространстве.

Рассмотрим решение примера, а после этого покажем еще один способ нахождения канонических и параметрических уравнений прямой в пространстве.

Пример.

Решение.

Вычислим сначала координаты направляющего вектора прямой. Для этого найдем векторное произведение нормальных векторов и плоскостей и :

То есть, .

Теперь определим координаты некоторой точки заданной прямой. Для этого найдем одно из решений системы уравнений .

Определитель отличен от нуля, возьмем его в качестве базисного минора основной матрицы системы. Тогда переменная z является свободной, переносим слагаемые с ней в правые части уравнений, и придаем переменной z произвольное значение :

Решаем методом Крамера полученную систему уравнений:

Следовательно,

Примем , при этом получаем координаты точки прямой: .

Теперь мы можем записать требуемые канонические и параметрические уравнения исходной прямой в пространстве:

Ответ:

и

Вот второй способ решения этой задачи.

При нахождении координат некоторой точки прямой мы решаем систему уравнений . В общем случае ее решения можно записать в виде .

А это как раз искомые параметрические уравнения прямой в пространстве. Если каждое из полученных уравнений разрешить относительно параметра и после этого приравнять правые части равенств, то получим канонические уравнения прямой в пространстве

Покажем решение предыдущей задачи по этому методу.

Пример.

Прямая в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей . Напишите канонические и параметрические уравнения этой прямой.

Решение.

Решаем данную систему из двух уравнений с тремя неизвестными (решение приведено в предыдущем примере, не будем повторяться). При этом получаем . Это и есть искомые параметрические уравнения прямой в пространстве.

Осталось получить канонические уравнения прямой в пространстве:

Полученные уравнения прямой внешне отличаются от уравнений, полученных в предыдущем примере, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства (а значит, одну и ту же прямую).

Ответ:

и

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Одним из видов уравнений прямой в пространстве является каноническое уравнение. Мы рассмотрим это понятие во всех подробностях, поскольку знать его необходимо для решения многих практических задач.

В первом пункте мы сформулируем основные уравнения прямой, расположенной в трехмерном пространстве, и приведем несколько примеров. Далее покажем способы вычисления координат направляющего вектора при заданных канонических уравнениях и решение обратной задачи. В третьей части мы расскажем, как составляется уравнение прямой, проходящей через 2 заданные точки в трехмерном пространстве, а в последнем пункте укажем на связи канонических уравнений с другими. Все рассуждения будут проиллюстрированы примерами решения задач.

О том, что вообще из себя представляют канонические уравнения прямой, мы уже говорили в статье, посвященной уравнениям прямой на плоскости. Случай с трехмерным пространством мы разберем по аналогии.

Допустим, у нас есть прямоугольная система координат O x y z , в которой задана прямая. Как мы помним, задать прямую можно разными способами. Используем самый простой из них – зададим точку, через которую будет проходить прямая, и укажем направляющий вектор. Если обозначить прямую буквой a , а точку M , то можно записать, что M 1 (x 1 , y 1 , z 1) лежит на прямой a и направляющим вектором этой прямой будет a → = (a x , a y , a z) . Чтобы множество точек M (x , y , z) определяло прямую a , векторы M 1 M → и a → должны быть коллинеарными,

Если мы знаем координаты векторов M 1 M → и a → , то можем записать в координатной форме необходимое и достаточное условие их коллинеарности. Из первоначальных условий нам уже известны координаты a → . Для того чтобы получить координаты M 1 M → , нам необходимо вычислить разность между M (x , y , z) и M 1 (x 1 , y 1 , z 1) . Запишем:

M 1 M → = x - x 1 , y - y 1 , z - z 1

После этого нужное нам условие мы можем сформулировать так: M 1 M → = x - x 1 , y - y 1 , z - z 1 и a → = (a x , a y , a z) : M 1 M → = λ · a → ⇔ x - x 1 = λ · a x y - y 1 = λ · a y z - z 1 = λ · a z

Здесь значением переменной λ может быть любое действительное число или ноль. Если λ = 0 , то M (x , y , z) и M 1 (x 1 , y 1 , z 1) совпадут, что не противоречит нашим рассуждениям.

При значениях a x ≠ 0 , a y ≠ 0 , a z ≠ 0 мы можем разрешить относительно параметра λ все уравнения системы x - x 1 = λ · a x y - y 1 = λ · a y z - z 1 = λ · a z

Между правыми частями после этого можно будет поставить знак равенства:

x - x 1 = λ · a x y - y 1 = λ · a y z - z 1 = λ · a z ⇔ λ = x - x 1 a x λ = y - y 1 a y λ = z - z 1 a z ⇔ x - x 1 a x = y - y 1 a y = z - z 1 a z

В итоге у нас получились уравнения x - x 1 a x = y - y 1 a y = z - z 1 a z , с помощью которых можно определить искомую прямую в трехмерном пространстве. Это и есть нужные нам канонические уравнения.

Такая запись используется даже при нулевых значениях одного или двух параметров a x , a y , a z , поскольку она в этих случаях она также будет верна. Все три параметра не могут быть равны 0 , поскольку направляющий вектор a → = (a x , a y , a z) нулевым не бывает.

Если один-два параметра a равны 0 , то уравнение x - x 1 a x = y - y 1 a y = z - z 1 a z носит условный характер. Его следует считать равным следующей записи:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , λ ∈ R .

Частные случаи канонических уравнений мы разберем в третьем пункте статьи.

Из определения канонического уравнения прямой в пространстве можно сделать несколько важных выводов. Рассмотрим их.

1) если исходная прямая будет проходить через две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , то канонические уравнения примут следующий вид:

x - x 1 a x = y - y 1 a y = z - z 1 a z или x - x 2 a x = y - y 2 a y = z - z 2 a z .

2) поскольку a → = (a x , a y , a z) является направляющим вектором исходной прямой, то таковыми будут являться и все векторы μ · a → = μ · a x , μ · a y , μ · a z , μ ∈ R , μ ≠ 0 . Тогда прямая может быть определена с помощью уравнения x - x 1 a x = y - y 1 a y = z - z 1 a z или x - x 1 μ · a x = y - y 1 μ · a y = z - z 1 μ · a z .

Вот несколько примеров таких уравнений с заданными значениями:

Пример 1 Пример 2

Как составить каноническое уравнение прямой в пространстве

Мы выяснили, что канонические уравнения вида x - x 1 a x = y - y 1 a y = z - z 1 a z будут соответствовать прямой, проходящей через точку M 1 (x 1 , y 1 , z 1) , а вектор a → = (a x , a y , a z) будет для нее направляющим. Значит, если мы знаем уравнение прямой, то можем вычислить координаты ее направляющего вектора, а при условии заданных координат вектора и некоторой точки, расположенной на прямой, мы можем записать ее канонические уравнения.

Разберем пару конкретных задач.

Пример 3

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x + 1 4 = y 2 = z - 3 - 5 . Запишите координаты всех направляющих векторов для нее.

Решение

Чтобы получить координаты направляющего вектора, нам надо просто взять значения знаменателей из уравнения. Мы получим, что одним из направляющих векторов будет a → = (4 , 2 , - 5) , а множество всех подобных векторов можно сформулировать как μ · a → = 4 · μ , 2 · μ , - 5 · μ . Здесь параметр μ – любое действительное число (за исключением нуля).

Ответ: 4 · μ , 2 · μ , - 5 · μ , μ ∈ R , μ ≠ 0

Пример 4

Запишите канонические уравнения, если прямая в пространстве проходит через M 1 (0 , - 3 , 2) и имеет направляющий вектор с координатами - 1 , 0 , 5 .

Решение

У нас есть данные, что x 1 = 0 , y 1 = - 3 , z 1 = 2 , a x = - 1 , a y = 0 , a z = 5 . Этого вполне достаточно, чтобы сразу перейти к записи канонических уравнений.

Сделаем это:

x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ x - 0 - 1 = y - (- 3) 0 = z - 2 5 ⇔ ⇔ x - 1 = y + 3 0 = z - 2 5

Ответ: x - 1 = y + 3 0 = z - 2 5

Эти задачи – самые простые, потому что в них есть все или почти все исходные данные для записи уравнения или координат вектора. На практике чаще можно встретить те, в которых сначала нужно находить нужные координаты, а потом записывать канонические уравнения. Примеры таких задач мы разбирали в статьях, посвященных нахождению уравнений прямой, проходящей через точку пространства параллельно заданной, а также прямой, проходящей через некоторую точку пространства перпендикулярно плоскости.

Ранее мы уже говорили, что одно-два значения параметров a x , a y , a z в уравнениях могут иметь нулевые значения. При этом запись x - x 1 a x = y - y 1 a y = z - z 1 a z = λ приобретает формальный характер, поскольку мы получаем одну или две дроби с нулевыми знаменателями. Ее можно переписать в следующем виде (при λ ∈ R):

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Рассмотрим эти случаи подробнее. Допустим, что a x = 0 , a y ≠ 0 , a z ≠ 0 , a x ≠ 0 , a y = 0 , a z ≠ 0 , либо a x ≠ 0 , a y ≠ 0 , a z = 0 . В таком случае нужные уравнения мы можем записать так:

  1. В первом случае:
    x - x 1 0 = y - y 1 a y = z - z 1 a z = λ ⇔ x - x 1 = 0 y = y 1 + a y · λ z = z 1 + a z · λ ⇔ x - x 1 = 0 y - y 1 a y = z - z 1 a z = λ
  2. Во втором случае:
    x - x 1 a x = y - y 1 0 = z - z 1 a z = λ ⇔ x = x 1 + a x · λ y - y 1 = 0 z = z 1 + a z · λ ⇔ y - y 1 = 0 x - x 1 a x = z - z 1 a z = λ

    В третьем случае:
    x - x 1 a x = y - y 1 a y = z - z 1 0 = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z - z 1 = 0 ⇔ z - z 1 = 0 x - x 1 a x = y - y 1 a y = λ

Получается, что при таком значении параметров нужные прямые находятся в плоскостях x - x 1 = 0 , y - y 1 = 0 или z - z 1 = 0 , которые располагаются параллельно координатным плоскостям (если x 1 = 0 , y 1 = 0 либо z 1 = 0). Примеры таких прямых показаны на иллюстрации.

Следовательно, мы сможем записать канонические уравнения немного иначе.

  1. В первом случае: x - x 1 0 = y - y 1 0 = z - z 1 a z = λ ⇔ x - x 1 = 0 y - y 1 = 0 z = z 1 + a z · λ , λ ∈ R
  2. Во втором: x - x 1 0 = y - y 1 a y = z - z 1 0 = λ ⇔ x - x 1 = 0 y = y 1 + a y · λ , λ ∈ R z - z 1 = 0
  3. В третьем: x - x 1 a x = y - y 1 0 = z - z 1 0 = λ ⇔ x = x 1 + a x · λ , λ ∈ R y = y 1 = 0 z - z 1 = 0

Во всех трех случаях исходные прямые будут совпадать с координатными осями или окажутся параллельными им: x 1 = 0 y 1 = 0 , x 1 = 0 z 1 = 0 , y 1 = 0 z 1 = 0 . Их направляющие векторы имеют координаты 0 , 0 , a z , 0 , a y , 0 , a x , 0 , 0 . Если обозначить направляющие векторы координатных прямых как i → , j → , k → , то направляющие векторы заданных прямых будут коллинеарными по отношению к ним. На рисунке показаны эти случаи:

Покажем на примерах, как применяются эти правила.

Пример 5

Найдите канонические уравнения, с помощью которых можно определить в пространстве координатные прямые O z , O x , O y .

Решение

Координатные векторы i → = (1 , 0 , 0) , j → = 0 , 1 , 0 , k → = (0 , 0 , 1) будут для исходных прямых направляющими. Также мы знаем, что наши прямые будут обязательно проходить через точку O (0 , 0 , 0) , поскольку она является началом координат. Теперь у нас есть все данные, чтобы записать нужные канонические уравнения.

Для прямой O x: x 1 = y 0 = z 0

Для прямой O y: x 0 = y 1 = z 0

Для прямой O z: x 0 = y 0 = z 1

Ответ: x 1 = y 0 = z 0 , x 0 = y 1 = z 0 , x 0 = y 0 = z 1 .

Пример 6

В пространстве задана прямая, которая проходит через точку M 1 (3 , - 1 , 12) . Также известно, что она расположена параллельно оси ординат. Запишите канонические уравнения этой прямой.

Решение

Учитывая условие параллельности, мы можем сказать, что вектор j → = 0 , 1 , 0 будет для нужной прямой направляющим. Следовательно, искомые уравнения будут иметь вид:

x - 3 0 = y - (- 1) 1 = z - 12 0 ⇔ x - 3 0 = y + 1 1 = z - 12 0

Ответ: x - 3 0 = y + 1 1 = z - 12 0

Допустим, что у нас есть две несовпадающие точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , через которые проходит прямая. Как в таком случае мы можем сформулировать для нее каноническое уравнение?

Для начала примем вектор M 1 M 2 → (или M 2 M 1 →) за направляющий вектор данной прямой. Поскольку у нас есть координаты нужных точек, сразу вычисляем координаты вектора:

M 1 M 2 → = x 2 - x 1 , y 2 - y 1 , z 2 - z 1

x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1

Получившиеся равенства – это и есть канонические уравнения прямой, проходящей через две заданные точки. Взгляните на иллюстрацию:

Приведем пример решения задачи.

Пример 7

в пространстве есть две точки с координатами M 1 (- 2 , 4 , 1) и M 2 (- 3 , 2 , - 5) , через которые проходит прямая. Запишите канонические уравнения для нее.

Решение

Согласно условиям, x 1 = - 2 , y 1 = - 4 , z 1 = 1 , x 2 = - 3 , y 2 = 2 , z 2 = - 5 . Нам требуется подставить эти значения в каноническое уравнение:

x - (- 2) - 3 - (- 2) = y - (- 4) 2 - (- 4) = z - 1 - 5 - 1 ⇔ x + 2 - 1 = y + 4 6 = z - 1 - 6

Если мы возьмем уравнения вида x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1 , то у нас получится: x - (- 3) - 3 - (- 2) = y - 2 2 - (- 4) = z - (- 5) - 5 - 1 ⇔ x + 3 - 1 = y - 2 6 = z + 5 - 6

Ответ: x + 3 - 1 = y - 2 6 = z + 5 - 6 либо x + 3 - 1 = y - 2 6 = z + 5 - 6 .

Преобразование канонических уравнений прямой в пространстве в другие виды уравнений

Иногда пользоваться каноническими уравнениями вида x - x 1 a x = y - y 1 a y = z - z 1 a z не очень удобно. Для решения некоторых задач лучше использовать запись x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В некоторых случаях более предпочтительно определить нужную прямую с помощью уравнений двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Поэтому в данном пункте мы разберем, как можно перейти от канонических уравнений к другим видам, если это требуется нам по условиям задачи.

Понять правила перехода к параметрическим уравнениям несложно. Сначала приравняем каждую часть уравнения к параметру λ и разрешим эти уравнения относительно других переменных. В итоге получим:

x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ ⇔ x - x 1 a x = λ y - y 1 a y = λ z - z 1 a z = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Значение параметра λ может быть любым действительным числом, ведь и x , y , z могут принимать любые действительные значения.

Пример 8

В прямоугольной системе координат в трехмерном пространстве задана прямая, которая определена уравнением x - 2 3 = y - 2 = z + 7 0 . Запишите каноническое уравнение в параметрическом виде.

Решение

Сначала приравниваем каждую часть дроби к λ .

x - 2 3 = y - 2 = z + 7 0 ⇔ x - 2 3 = λ y - 2 = λ z + 7 0 = λ

Теперь разрешаем первую часть относительно x , вторую – относительно y , третью – относительно z . У нас получится:

x - 2 3 = λ y - 2 = λ z + 7 0 = λ ⇔ x = 2 + 3 · λ y = - 2 · λ z = - 7 + 0 · λ ⇔ x = 2 + 3 · λ y = - 2 · λ z = - 7

Ответ: x = 2 + 3 · λ y = - 2 · λ z = - 7

Следующим нашим шагом будет преобразование канонических уравнений в уравнение двух пересекающихся плоскостей (для одной и той же прямой).

Равенство x - x 1 a x = y - y 1 a y = z - z 1 a z нужно для начала представить в виде системы уравнений:

x - x 1 a x = y - y 1 a y x - x 1 a x = z - z 1 a x y - y 1 a y = z - z 1 a z

Поскольку p q = r s мы понимаем как p · s = q · r , то можно записать:

x - x 1 a x = y - y 1 a y x - x 1 a x = z - z 1 a z y - y 1 a y = z - z 1 a z ⇔ a y · (x - x 1) = a x · (y - y 1) a z · (x - x 1) = a x · (z - z 1) a z · (y - y 1) = a y · (z - z 1) ⇔ ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0 a z · x - a x · z + a x · z 1 - a z · x 1 = 0 a z · y - a y · z + a y · z 1 - a z · y 1 = 0

В итоге у нас вышло, что:

x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0 a z · x - a x · z + a x · z 1 - a z · x 1 = 0 a z · y - a y · z + a y · z 1 - a z · y 1 = 0

Выше мы отмечали, что все три параметра a не могут одновременно быть нулевыми. Значит, ранг основной матрицы системы будет равен 2 , поскольку a y - a x 0 a z 0 - a x 0 a z - a y = 0 и один из определителей второго порядка не равен 0:

a y - a x a z 0 = a x · a z , a y 0 a z - a x = a x · a y , - a x 0 0 - a x = a x 2 a y - a x 0 a z = a y · a z , a y 0 0 - a y = - a y 2 , - a x 0 a z - a y = a x · a y a z 0 0 a z = a z 2 , a z - a x 0 - a y = - a y · a z , 0 - a x a z - a y = a x · a z

Это дает нам возможность исключить одно уравнение из наших расчетов. Таким образом, канонические уравнения прямой можно преобразовать в систему из двух линейных уравнений, которые будут содержать 3 неизвестных. Они и будут нужными нам уравнениями двух пересекающихся плоскостей.

Рассуждение выглядит довольно сложным, однако на практике все делается довольно быстро. Продемонстрируем это на примере.

Пример 9

Прямая задана каноническим уравнением x - 1 2 = y 0 = z + 2 0 . Напишите для нее уравнение пересекающихся плоскостей.

Решение

Начнем с попарного приравнивания дробей.

x - 1 2 = y 0 = z + 2 0 ⇔ x - 1 2 = y 0 x - 1 2 = z + 2 0 y 0 = z + 2 0 ⇔ ⇔ 0 · (x - 1) = 2 y 0 · (x - 1) = 2 · (z + 2) 0 · y = 0 · (z + 2) ⇔ y = 0 z + 2 = 0 0 = 0

Теперь исключаем из расчетов последнее уравнение, потому что оно будет верным при любых x , y и z . В таком случае x - 1 2 = y 0 = z + 2 0 ⇔ y = 0 z + 2 = 0 .

Это и есть уравнения двух пересекающихся плоскостей, которые при пересечении образуют прямую, заданную с помощью уравнения x - 1 2 = y 0 = z + 2 0

Ответ: y = 0 z + 2 = 0

Пример 10

Прямая задана уравнениями x + 1 2 = y - 2 1 = z - 5 - 3 , найдите уравнение двух плоскостей, пересекающихся по данной прямой.

Решение

Приравниваем дроби попарно.

x + 1 2 = y - 2 1 = z - 5 - 3 ⇔ x + 1 2 = y - 2 1 x + 1 2 = z - 5 - 3 y - 2 1 = z - 5 - 3 ⇔ ⇔ 1 · (x + 1) = 2 · (y - 2) - 3 · (x + 1) = 2 · (z - 5) - 3 · (y - 2) = 1 · (z - 5) ⇔ x - 2 y + 5 = 0 3 x + 2 z - 7 = 0 3 y + 7 - 11 = 0

Получаем, что определитель основной матрицы полученной системы будет равен 0:

1 - 2 0 3 0 2 0 3 1 = 1 · 0 · 1 + (- 2) · 2 · 0 + 0 · 3 · 3 - 0 · 0 · 0 - 1 · 2 · 3 - (- 2) · 3 · 1 = 0

Минор второго порядка нулевым при этом не будет: 1 - 2 3 0 = 1 · 0 - (- 2) · 3 = 6 . Тогда мы можем принять его в качестве базисного минора.

В итоге мы можем вычислить ранг основной матрицы системы x - 2 y + 5 = 0 3 x + 2 z - 7 = 0 3 y + z - 11 = 0 . Это будет 2. Третье уравнение исключаем из расчета и получаем:

x - 2 y + 5 = 0 3 x + 2 z - 7 = 0 3 y + z - 11 = 0 ⇔ x - 2 y + 5 = 0 3 x + 2 z - 7 = 0

Ответ: x - 2 y + 5 = 0 3 x + 2 z - 7 = 0

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


В прямоугольной системе координат на плоскости прямая линия может быть задана каноническим уравнением прямой. В этой статье мы сначала выведем , запишем канонические уравнения прямых на плоскости, которые параллельны координатным осям или совпадают с ними, а также приведем примеры. Далее покажем связь канонического уравнения прямой на плоскости с другими видами уравнения этой прямой. В заключении подробно рассмотрим решения характерных примеров и задач на составление канонического уравнения прямой на плоскости.

Навигация по странице.

Каноническое уравнение прямой на плоскости – описание и примеры.

Пусть на плоскости зафиксирована Oxy . Поставим себе задачу: получить уравнение прямой a , если - некоторая точка прямой a и - направляющий вектор прямой a .

Пусть - плавающая точка прямой a . Тогда вектор является направляющим вектором прямой a и имеет координаты (при необходимости смотрите статью ). Очевидно, что множество всех точек на плоскости определяют прямую, проходящую через точку и имеющую направляющий вектор тогда и только тогда, когда векторы и коллинеарны.

Пример.

Напишите каноническое уравнение прямой, которая в прямоугольной системе координат Oxy на плоскости проходит через две точки и .

Решение.

По известным координатам точек начала и конца мы можем найти координаты вектора : . Этот вектор является направляющим вектором прямой, уравнение которой мы ищем. Каноническое уравнение прямой, проходящей через точку и имеющей направляющий вектор.

Решение.

Нормальный вектор прямой имеет координаты , причем этот вектор является направляющим вектором прямой, уравнение которой мы ищем в силу перпендикулярности прямых. Таким образом, искомое каноническое уравнение прямой на плоскости запишется как .

Ответ:

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.