Начальная школа

Презентация на тему "предел". "предел функции" Предел функции и непрерывность функции презентация

Презентация на тему

Слайд 2

Титульная страница Оглавление Вступление Предел переменной величины Основные свойства пределов Предел функции в точке Понятие о непрерывности функции Предел функции на бесконечности Замечательные пределы Заключение

Слайд 3

Предел переменной величины

Предел – одно из основных понятий математического анализа. Понятие предела использовалось еще Ньютоном во второй половине XVII века и математиками XVIII века, такими как Эйлер и Лагранж, однако они понимали предел интуитивно. Первые строгие определения предела дали Больцано в 1816 году и Коши в 1821 году.

Слайд 4

1. Предел переменной величины

Пусть переменная величина x в процессе своего изменения неограниченно приближается к числу 5, принимая при этом следующие значения: 4,9; 4,99;4,999;…или 5,1; 5,01; 5,001;… В этих случаях модуль разности стремится к нулю: = 0,1; 0,01; 0,001;… Число 5 в приведенном примере называют пределом переменной величины x и пишут lim x = 5. Определение 1. Постоянная величина a называется пределом переменной x, если модуль разности при изменении x становится и остается меньше любого как угодно малого положительного числа e.

Слайд 5

2. Основные свойства пределов

1. Предел алгебраической суммы конченного числа переменных величин равен алгебраической сумме пределов слагаемых: lim(x + y + … + t) = lim x + lim y + … + lim t. 2. Предел произведения конечного числа переменных величин равен произведению их пределов: lim(x·y…t) = lim x · lim y…lim t. 3. Постоянный множитель можно выносить за знак предела: lim(cx) = lim c · lim x = c lim x. Например, lim(5x + 3) = lim 5x + lim 3 = 5 lim x + 3. 4. Предел отношения двух переменных величин равен отношению пределов, если предел знаменателя не равен нулю: lim = lim y 5. Предел целой положительной степени переменной величины равен той же степени предела этой же переменной: lim = (lim x)n Например: = = x3 + 3 x2 = (-2)2 + 3·(-2)2 = -8 + 12 = 4 6. Если переменные x, y, z удовлетворяют неравенствам x и xzy

Слайд 6

3.Предел функции в точке

Определение 2. Число b называется пределом* функции в точке a, если для всех значений x, достаточно близких к a и отличных от a, значения функции сколь угодно мало отличаются от числа b. 1.Найти: (3x2 – 2x). Решение. Используя последовательно свойства 1,3 и 5 предела, получим (3x2 – 2x) = (3x2) - (2x) = 3x2 - 2x = 3 - 2x = 3 22 - 2·2 = 8

Слайд 7

4. Понятие о непрерывности функции

2. Вычислить Решение. При x = 1 дробь определена, так как ее знаменатель отличен от нуля. Поэтому для вычисления предела достаточно заменить аргумент его предельным значением. Тогда получим Указанное правило вычисления пределов нельзя применять в следующих случаях: 1)Если функция при x = a не определена; 2)Если знаменатель дроби при подстановке x = a оказывается равным нулю; 3)Если числитель и знаменатель дроби при подстановке x = a одновременно оказывается равным нулю или бесконечности. В таких случаях пределы функций находят с помощью различных искусственных приемов.

Слайд 8

5. Предел функции на бесконечности

3.Найти Решение. При x знаменатель х + 5 также стремится к бесконечности, а обратная ему величина 0. Следовательно, произведение · 3 = стремится к нулю, если x . Итак, = 0

Слайд 9

6. Замечательные пределы

Некоторые пределы невозможно найти теми способами, которые были изложены выше. Пусть например, требуется найти. Непосредственная подстановка вместо аргумента его предела дает неопределенность вида 0/0. Невозможно также преобразовать числитель и знаменатель таким образом, чтобы выделить общий множитель, предел которого равен нулю. Поступим следующим образом. Возьмем круг с радиусом, равным 1, и построим центральный угол АОВ, равный 2х радианам. Проведем хорду АВ и касательные АD и ВD к окружности в точках А и В. Очевидно, что |AC| = |CB| = sin x, |AD| = |DB| = tgх = 1 – Первый замечательный предел. x = e 2,7182…,. x – Второй замечательный предел. Решение. Разделив числитель и знаменатель на x,получим x = ()x = = =

Слайд 10

7. Вычисления пределов

1. (x2 – 7x + 4) = 32 – 7·3 + 4 = - 8. Решение. Для нахождения предела непосредственного нахождения заменим пределы функции в точке. 2. . Решение. Здесь пределы числителя и знаменателя при x равным нулю. Умножим числитель и знаменатель на выражение,сопряженное числителю, получим = = = = Следовательно, = = = =

Слайд 11

Заключение

В данном проекте рассматривался наряду с теоретическим материалом и практический. В практическом применении рассмотрели всевозможные способы вычисления пределов. Изучение второго раздела высшей математики уже вызывает большой интерес, так как в прошлом году рассматривали тему «Матрицы. Применение свойств матрицы к решению систем уравнений», которая была простой, хотя бы по той причине, что получаемый результат был контролируемым. Здесь такого контроля нет. Изучение Разделов высшей математики дает свой положительный результат. Занятия по данному курсу принесли свои результаты: - изучен большой объем теоретического и практического материала; - выработано умение выбирать способ вычисления предела; - отработано грамотное использование каждого способа вычисления; - закреплено умение проектировать алгоритм задания. Мы будем продолжать изучение разделов высшей математики. Цель ее изучения состоит в том, что мы будем хорошо готовы к повторному изучению курса высшей математики.

Посмотреть все слайды


Предел функции в точке Пусть функция y = f(x) определена в некоторой окрестности точки x 0, кроме, быть может самой точки x 0. Число А называют пределом функции в точке x 0 (или при), если для любого положительного ε найдется такое положительное число δ, что для всех х из δ – окрестности точки x 0 справедливо неравенство:




Односторонние пределы В определении предела функции Бывают случаи, когда способ приближения аргумента x к x 0 существенно влияет на значение предела, поэтому вводят понятия односторонних пределов. предполагается, что x стремится к x 0 любым способом: оставаясь меньше, чем x 0 (слева от x 0), большим, чем x 0 (справа от x 0), или колеблясь около точки x 0. Число А 1 называют пределом функции слева в точке x 0, если для любого ε > 0 найдется такое δ >0, что для всех справедливо неравенство: Предел слева записывают так: 0 найдется такое δ >0, что для всех справедливо неравенство: Предел слева записывают так:">


Односторонние пределы Число А 2 называют пределом функции справа в точке x 0, если Предел справа записывают так: y 0 х А1А1 х0х0 А2А2 Пределы функции слева и справа называют односторонними пределами. Очевидно, если существует то существуют и оба односторонних предела, причем А = А 1 = А 2 y 0 х А 1 =А 2 =А х0х0


M или при x M или при x 6 Предел функции при x стремящемся к бесконечности Пусть функция y = f(x) определена в промежутке. Число А называют пределом функции при, если Геометрический смысл этого определения таков: существует такое число М, что при х > M или при x M или при x M или при x M или при x M или при x title="Предел функции при x стремящемся к бесконечности Пусть функция y = f(x) определена в промежутке. Число А называют пределом функции при, если Геометрический смысл этого определения таков: существует такое число М, что при х > M или при x


Основные теоремы о пределах Рассмотрим теоремы, которые облегчают нахождение пределов функций. Предел суммы (разности) двух функций равен сумме (разности) пределов: Формулировка теорем, когда или аналогичны, поэтому будем пользоваться обозначением:. Предел произведения двух функций равен произведению пределов: Постоянный множитель можно выносить за знак предела:




X 0, то существует соответственно ее левый предел: или ее правы" title="Основные теоремы о пределах Если между соответствующими значениями трех функций при этом: тогда: выполняются неравенства: Если функция f(x) монотонна и ограничена при x x 0, то существует соответственно ее левый предел: или ее правы" class="link_thumb"> 9 Основные теоремы о пределах Если между соответствующими значениями трех функций при этом: тогда: выполняются неравенства: Если функция f(x) монотонна и ограничена при x x 0, то существует соответственно ее левый предел: или ее правый предел: x 0, то существует соответственно ее левый предел: или ее правы"> x 0, то существует соответственно ее левый предел: или ее правый предел:"> x 0, то существует соответственно ее левый предел: или ее правы" title="Основные теоремы о пределах Если между соответствующими значениями трех функций при этом: тогда: выполняются неравенства: Если функция f(x) монотонна и ограничена при x x 0, то существует соответственно ее левый предел: или ее правы"> title="Основные теоремы о пределах Если между соответствующими значениями трех функций при этом: тогда: выполняются неравенства: Если функция f(x) монотонна и ограничена при x x 0, то существует соответственно ее левый предел: или ее правы">


Вычисление пределов Вычисление предела: начинают с подстановки предельного значения x 0 в функцию f(x). Если при этом получается конечное число, то предел равен этому числу. Если при подстановки предельного значения x 0 в функцию f(x) получаются выражения вида: то предел будет равен:




Раскрытие неопределенностей Раскрытие неопределенности Если f(x) – дробно – рациональная функция, необходимо разложить на множители числитель и знаменатель дроби Если f(x) – иррациональная дробь, необходимо умножить числитель и знаменатель дроби на выражение, сопряженное числителю.



15 Первый замечательный предел Функция не определена при x = 0. Найдем предел этой функции при О АВ С М Обозначим: S 1 - площадь треугольника OMA, S 2 - площадь сектора OMА, S 3 - площадь треугольника OСА, Из рисунка видно, что S 1













Правила вычисления пределов Если lim f(x) = b и lim g(x) =c, то x 1) Предел суммы равен сумме пределов: lim (f(x)+ g(x)) = lim f(x)+ lim g(x) = b+ c x x x 2) Предел произведения равен произведению пределов: lim f(x)·g(x) = lim f(x) * lim g(x) = b·c x x x 3) Предел частного равен частному пределов: lim f(х):g(x) = lim f(x) : lim g(x)= b:c x x x 4) Постоянный множитель можно вынести за знак предела: lim k· f(x) = k · lim f(x)= k b x x




План конспекта Графики функций y=1/x и y=1/x 2. Графики функций y=1/x m, для m четных и нечетных. Понятие горизонтальной асимптоты. Понятия предела функции на +, -,. Геометрический смысл предела функции на +, -,. Правила вычисления пределов функции на. Формулы вычисления предела функции на. Приемы вычисления пределов функции на.


Итог урока Что означает существование предела функции на бесконечности? Какую асимптоту имеет функция y=1/ x 4 ? Какие вы знаете правила для вычисления пределов функции на бесконечности? С какими формулами вычисления пределов на бесконечности вы познакомились? Как найти lim (5-3x 3) / (6x 3 +2)? x


Использованная литература: - А.Г.Мордкович. Алгебра и начала математического анализа классы. Мнемозина.М А.Г.Мордкович., П.В.Семенов. Методическое пособие для учителя. Алгебра и начала математического анализа класс. Базовый уровень. М.Мнемозина. 2010

Цели урока:

  • Образовательные:
    • ввести понятие предела числа, предела функции;
    • дать понятия о видах неопределенности;
    • научиться вычислять пределы функции;
    • систематизировать полученные знания, активизировать самоконтроль, взаимоконтроль.
  • Развивающие:
    • уметь применять полученные знания для вычисления пределов.
    • развивать математическое мышление.
  • Воспитательная: воспитать интерес к математике и к дисциплинам умственного труда.

Тип урока: первый урок

Формы работы учащихся: фронтальная, индивидуальная

Необходимое оборудование: интерактивная доска, мультимедиа проектор, карточки с устными и подготовительными упражнениями.

План урока

1. Организационный момент (3 мин.)
2. Ознакомление с теорией предела функции. Подготовительные упражнения. (12 мин.)
3. Вычисление пределов функции (10 мин.)
4. Самостоятельные упражнения (15 мин.)
5. Подведение итогов урока (2 мин.)
6. Домашнее задание (3 мин.)

ХОД УРОКА

1. Организационный момент

Приветствие учителя, отметить отсутствующих, проверить подготовку к уроку. Сообщить тему и цель урока. В дальнейшем все задания выводятся на интерактивную доску.

2. Ознакомление с теорией предела функции. Подготовительные упражнения.

Предел функции (предельное значение функции ) в заданной точке, предельной для области определения функции, - такая величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке.
Записывается предел следующим образом .

Вычислим предел:
Подставляем вместо х – 3.
Заметим, что предел числа равен самому числу.

Примеры : вычислите пределы

Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция называется непрерывной (в данной точке).

Вычислим значение функции в точке x 0 = 3 и значение его предела в этой точке.

Значение предела и значение функции в этой точке совпадает, следовательно, функция непрерывна в точке x 0 = 3.

Но при вычислении пределов зачастую появляются выражения, значение которых не определено. Такие выражения называют неопределённостями.

Основные виды неопределенностей:

Раскрытие неопределенностей

Для раскрытия неопределенностей используют следующее:

  • упрощают выражение функции: раскладывают на множители, преобразовывают функцию с помощью формул сокращенного умножения, тригонометрических формул, домножают на сопряженное, что позволяет в дальнейшем сократить и т.д., и т.п.;
  • если предел при раскрытии неопределенностей существует, то говорят, что функция сходится к указанному значению, если такого предела не существует, то говорят, что функция расходится.

Пример : вычислим предел.
Разложим числитель на множители

3. Вычисление пределов функции

Пример 1 . Вычислите предел функции:

При прямой подстановке, получается неопределенность:

4. Самостоятельные упражнения

Вычислите пределы:

5. Подведение итогов урока

Данный урок первый

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Вычисление пределов функции. Предел функции на бесконечности. Два замечательных предела. Вычисление числа «е». (практическое занятие)

Цель занятия: Повторить, обобщить и систематизировать знания по теме «Вычисление пределов функции» и отработать их применение на практике

Ход урока: 1. Организационный момент 2. Проверка домашнего задания 3. Повторение опорных знаний 4. Изучение нового материала 5. Актуализация знаний 6. Домашнее задание 7. Итоги урока. Рефлексия

Проверка домашнего задания Вычислите пределы: 1 вариант 2 вариант 1) 1) 2) 2) 3) 3)

Проверка домашнего задания Ответы: 1) -1,2; 0,4; -√5 2) 25, 4/3, 1/5√2

Повторение опорных знаний Что называют пределом функции в точке? Записать определение непрерывности функции. Сформулируйте основные теоремы о пределах. Какие способы вычисления пределов вы знаете?

Повторение опорных знаний Определение предела. Число b – предел функции f(x) при x стремящемся к a , если для каждого положительного числа e можно указать такое положительной число d, что для всех x , отличных от a и удовлетворяющих неравенству | x-a |

Повторение опорных знаний Основные теоремы о пределах: ТЕОРЕМА 1 . Предел суммы двух функций при x стремящемся к a равен сумме пределов этих функций, то есть ТЕОРЕМА 2 . Предел произведения двух функций при x стремящемся к a равен произведению пределов этих функций, то есть ТЕОРЕМА 3 . Предел частного двух функций при x стремящемся к a равен частному пределов, если предел знаменателя отличен от нуля, то есть и равен плюс (минус) бесконечности, если предел знаменателя 0 , а предел числителя конечен и отличен от нуля.

Повторение опорных знаний Способы вычисления пределов: Непосредственной подстановкой Разложение числителя и знаменателя на множители и сокращение дроби Домножение на сопряженные с целью избавления от иррациональности

Изучение нового материала Предел на бесконечности: Число А называется пределом функции y=f(x) на бесконечности (или при х, стремящимся к бесконечности), если для всех достаточно больших по модулю значений аргумента х соответствующие значения функции f(x) сколь угодно мало отличаются от числа А.

Изучение нового материала Разделим числитель и знаменатель дроби н старшую степень переменной:

Изучение нового материала Первый замечательный предел Второй замечательный предел равен

Изучение нового материала Использование замечательных пределов Первый замечательный предел: Второй замечательный предел:

Изучение нового материала

Актуализация знаний

Задание на дом Вычислите пределы: Задание на дом

Сегодня я узнал … Было трудно … Было интересно … Я понял, что… Теперь я могу … Я попробую … Я научился … Меня заинтересовало … Меня удивило … Рефлексия


По теме: методические разработки, презентации и конспекты

Методические рекомедации по организации и проведению практического занятия по математике. Тема: Вычисление пределов функций с использованием первого и второго замечательных пределов.