Разработки

Многоатомные спирты взаимодействуют с щелочами. Получение одноатомных спиртов. Физические свойства многоатомных спиртов

Многоатомные спирты взаимодействуют с щелочами. Получение одноатомных спиртов. Физические свойства многоатомных спиртов

ТЕМА №4: ОДНО И МНОГОАТОМНЫЕ СПИРТЫ. ПРОСТЫЕ ЭФИРЫ.

Лекция 4.1: Одно и многоатомные спирты. Простые эфиры.

Учебные вопросы:

1. Общая классификация спиртов. Предельные одноатомные спирты, их гомологический ряд, общая формула, изомерия, номенклатура.

2. Физико-химические и пожароопасные свойства спиртов;

3. Основные химические реакции: окисления (горение, склонность к самовозгоранию, неполное окисление); замещения (образование алкоголятов, простых и сложных эфиров, галогенпроизводных); дегидрирования и дегидратации спиртов.

4. Промышленные и лабораторные методы получения спиртов из углеводородов, природных сахаристых веществ, алкилгалогенидов, путем восстановления карбонильных соединений. Краткая характеристика спиртов: метилового, этилового, пропилового, бутилового, бензилового и циклогеканола.

5. Многоатомные спирты: изомерия, номенклатура, физико-химические и пожароопасные свойства (на примере этиленгликоля и глицерина). Основные химические реакции: окисления (горения, склонность к самовозгоранию, неполное окисление); замещение (образование алкоголятов сложных эфиров); дегидратации.

6. Промышленные методы получения многоатомных спиртов из полигалогенпроизводных углеводородов, путем окисления алкенов.

7. Простые эфиры: номенклатура, изомерия, физико-химические и пожароопасные свойства. Основные химические реакции: окисления (горение, склонность к самовозгоранию), автоокисления. Способы получения эфиров. Краткая характеристика простых эфиров: диэтилового и дипропилового.

Одноатомные спирты.

Спиртами называются производные углеводородов, представляющие собой продукты замещения атома (атомов) водорода в углеводородной молекуле гидроксильной группой –ОН . В зависимости от того, какое количество атомов водорода замещено, спирты бывают одноатомными и многоатомными. Т.е. число групп –ОН в молекуле спирта характеризует атомность последнего.

Наибольшее значение имеют предельные одноатомные спирты. Состав членов ряда предельных одноатомных спиртов может быть выражен общей формулой - С n H 2n+1 ОН или R-OH.

Несколько первых членов гомологического ряда спиртов и их названия по радикально-функциональной, заместительной и рациональной номенклатурам соответственно приведены ниже:

По радикально-функциональной номенклатуре название спиртов образуется из названия радикалов и слова «спирт», выражающего функциональное название класса.

Международная заместительная номенклатура : к заместительному названию углеводорода, производным которого является спирт, добавляют окончание –ол (алканолы). Локант указывает номер атома углерода, при котором расположен гидроксил . Главная углеродная цепь выбирается таким образом, чтобы она включала углерод, несущий гидроксильную группу. Начало нумерации цепи так же определяет гидроксил.

Рациональная номенклатура : все спирты рассматриваются как производные метанола (СН 3 ОН), который в данном случае называется карбинолом : и в котором водородные атомы замещены на один или несколько радикалов. Название спирта составляют из названий этих радикалов и слова – карбинол.

Таблица 1

Изомерия и номенклатура бутиловых спиртов (С 4 Н 9 ОН)

Изомерия предельных одноатомных спиртов обусловлена изомерией углеродного скелета и изомерией положения ОН- группы. Метиловый и этиловый спирты не имеют изомеров. В зависимости от положения гидроксильной группы при первичном, вторичном или третичном углеродном атоме спирты могут быть первичными, вторичными, третичными:

Пропиловых спирта два:

Для бутанола могут быть выведены 4 изомера (см. таблицу 1);

Число изомеров в ряду спиртов быстро растет: С 5 -восемь изомеров, С 6 - семнадцать, С 10 - пятьсот семь.

Физические свойства

Газов в гомологическом ряду нет. Это жидкости. Начиная с С 12 Н 25 ОН до С 20 Н 41 ОН – маслообразные и с С 21 Н 43 ОН - твердые вещества.

Т кип СН 3 ОН=65 °С, Т кип С 2 Н 5 ОН=78 °С, r(С 2 Н 5 ОН)=0,8 г/см 3

Первичные спирты изостроения имеют более низкие температуры кипения, чем нормальные первичные спирты .

В спиртах имеет место ассоциация молекул друг с другом за счет образования водородной связи. [Длина водородной связи больше обычной связи –ОН, а прочность значительно меньше (раз в 10).] Поэтому метанол-жидкость, а метан-газ. Чтобы разрушить водородные связи, надо затратить энергию; это может быть осуществлено при нагревании спирта.

Спирты легче воды: их плотности меньше 1. Метиловый, этиловый и пропиловый спирты смешиваются с водой во всех соотношениях. По мере усложнения углеводородных радикалов растворимость спиртов резко падает. Бутиловый спирт растворяется частично. Высшие спирты в воде не растворяются, т.е. выталкиваются из воды.

Из сказанного можно сделать вывод, что растворимые спирты можно тушить разбавлением (до концентрации менее 25 %); не растворимые в воде спирты водой тушить не рекомендуется, т.к. при этом спирты всплывают на поверхность воды и процесс горения продолжается. Водные растворы содержащие 25 % спирта и более - являются ЛВЖ. Следует отметить, что разбавленные растворы спиртов относятся к категории трудно горючих веществ, т.е. склонны гореть в присутствии источника зажигания.

Химические свойства

1.Спирты реагируют со щелочными металлами (Na, K и т.д.) с образованием алкоголятов :

2R-OH + 2Na ® 2R-ONa + H 2 ­

Реакция протекает не так бурно, как при использовании воды. Причем с увеличением молярной массы спирта его активность в указанной реакции уменьшается. Первичные спирты значительно активнее в реакциях со щелочными металлами, чем изомерные им вторичные и, особенно, третичные.

Спирты в данной реакции проявляют свойства кислот, но они еще более слабые кислоты, чем вода: К дис Н 2 О=10 -16 ; К дис CH 3 OH=10 -17 ; К дис C 2 H 5 OH = 10 -18 . Последнее объясняется влиянием радикала на алкильную группу (R- доноры).

Практически же спирты нейтральные вещества: они не показывают ни кислой, ни щелочной реакции на лакмус, не проводят электрического тока .

2. Замещение гидроксильной группы спиртов на галоген:

Где Н 2 SO 4 водоотнимающее средство.

3. Взаимодействие спиртов с кислотами называют реакцией этерификации . В результате ее образуются сложные эфиры:

Легче всего этерификации подвергаются первичные спирты, труднее –

вторичные и наиболее трудно этерифицируются третичные спирты .

4. Дегидратация спиртов под действием водоотнимающих средств (H 2 SO 4):

Внутримолекулярная :

Видно, что результат реакции зависит от условий ее проведения.

Межмолекулярная :

В первом случае образующаяся вначале при смешивании H 2 SO 4 (избыток) со спиртом алкилсерная кислота при нагревании разлагается, вновь выделяя серную кислоту и этиленовый углеводород.

Во втором случае образующаяся вначале алкилосерноя кислота реагирует со второй молекулой спирта с образованием молекулы простого эфира:

5. При высокой температуре кислород воздуха окисляет спирты с образованием СО 2 или Н 2 О (процесс горения ). Метанол и этанол горят почти несветящимся пламенем, высшие – более ярким коптящим. Это связано с увеличением относительного увеличением углерода в молекуле.

Растворы KMnO 4 и K 2 Cr 2 O 7 (кислые) окисляют спирты. Раствор KMnO 4 обесцвечивается, раствор K 2 Cr 2 O 7 становится зеленым .

Первичные спирты при этом образуют альдегиды, вторичные – кетоны, дальнейшее окисление альдегидов и кетонов приводит к получению карбоновых кислот:

Третичные спирты в мягких условиях устойчивы к действию окислителей, в жестких условиях разрушаются, образуя при этом смесь кетонов и карбоновых кислот:

6. При пропускании паров первичных и вторичных спиртов над поверхностью наколенных мелкораздробленных металлов (Cu, Fe) происходит их дегидрирование :

Способы получения

В свободном виде в природе спирты встречаются редко.

1. Большое количество этилового спирта, а также пропиловый, изобутиловый и амиловый спирты получают из природных сахаристых веществ в результате брожения. Например:

2. Из этиленовых углеводородов гидратацией :

3. Из ацетилена гидратацией (по реакции Кучерова) :

4. При гидролизе галогеналкилов :

(для смещения равновесия реакцию ведут в щелочной среде).

4. При восстановлении альдегидов водородом в момент выделения образуются первичные спирты, кетонов – вторичные:

Отдельные представители .

Метиловый спирт . Следует отметить сильную ядовитость СН 3 ОН . В то же время он используется как растворитель, из него получают формальдегид (необходимый для производства пластмасс), им денатурируют этиловый спирт и используют как горючее. В промышленности его получают из смеси СО и Н 2 под давлением над нагретым катализатором (ZnO и др.), при сухой перегонке древесины (древесный спирт):

СО + 2Н 2 ® СН 3 ОН (метанол)

(Пары спирта с воздухом образуют взрывоопасные смеси. ЛВЖ, Т всп. =8 о С).

От контакта с сильными окислителями (дымящая HNO 3), CrO 3 и Na 2 O 2 метанол самовозгорается.

Этиловый спирт (этанол, винный спирт). Бесцветная жидкость с характерным запахом и жгучим вкусом. С водой образует азеотроп (96 % С 2 Н 5 ОН + 4 % Н 2 О). Химическим способом (осушая CaO, CuSO 4 , Ca) можно получить абсолютный спирт. Используется при получении каучуков, а также как растворитель, в парфюмерии (духи, одеколоны), горючее, дезинфицирующее средство, алкогольный напиток, на его основе готовят лекарства. (ЛВЖ, Т всп. =13 о С). С добавкой ядовитых дурно пахнущих веществ он называется денатуратом. Получают спирт в результате брожения сахаристых веществ, из целлюлозы (гидролизный спирт), гидратацией этилена в присутствии серной кислоты, восстановлением уксусного альдегида водородом, уксусный альдегид в свою очередь получают по реакции Кучерова с использованием ацетилена (см. стр. 66). Добавка метилового и этилового спиртов к моторному топливу способствует полноте сгорания топлива и устраняет загрязнение атмосферы.

Физиологически этиловый спирт действует на организм как наркотик, к которому появляется пристрастие, и который разрушает психику.

Многоатомные спирты .

Двухатомные спирты называются гликолями , трехатомные – глицеринами . По международной заместительной номенклатуре двухатомные спирты называются алкандиолами , трехатомные – алкантриолами . Спирты с двумя гидроксилами при одном углеродном атоме обычно в свободном виде не существуют ; при попытках получить их они разлагаются, выделяя воду и превращаясь в соединение с карбонильной группой – альдегиды или кетоны:

Трехатомные спирты с тремя гидроксилами при одном углеродном атоме еще более неустойчивы, чем аналогичные двухатомные, и в свободном виде неизвестны:

Поэтому первым представителем двухатомных спиртов является производное этана состава С 2 Н 4 (ОН) 2 с гидроксильными группами при различных углеродных атомах – 1,2-этандиол, или иначе - этиленгликоль (гликоль ). Пропану соответствует уже два двухатомных спирта – 1,2-пропадиол, или пропиленгликоль, и 1,3-пропандиол, или триметиленгликоль:

Гликоли, в которых две спиртовые гидроксильные группы расположены в цепи рядом – при соседних атомах углерода, называются a-гликолями (например, этиленгликоль, пропиленгликоль). Гликоли со спиртовыми группами, расположенными через один углеродный атом, называются b-гликолями (триметиленгликоль). И так далее.

Среди двухатомных спиртов этиленгликоль представляет наибольший интерес. Он используется в качестве антифриза для охлаждения цилиндров автомобильных, тракторных и авиационных двигателей; при получении лавсана (полиэфир спирта с терефталевой кислотой).

Это бесцветная сиропообразная жидкость, не имеющая запаха, сладкая на вкус, ядовита . Смешивается с водой и спиртом. Т кип. =197 о С, Т пл. = -13 о С, d 20 4 =1,114 г/см 3 . Горючая жидкость.

Дает все реакции, характерные для одноатомных спиртов, причем в них может участвовать одна или обе спиртовые группы. Вследствие наличия двух ОН-групп гликоли обладают несколько более кислыми свойствами, чем одноатомные спирты, хотя и не дают кислой реакции на лакмус, не проводят электрического тока. Но в отличие от одноатомных спиртов они растворяют гидроксиды тяжелых металлов . Например, при приливании этиленгликоля к голубому студенистому осадку Cu(OH) 2 образуется синий раствор гликолята меди:

При действии PCl 5 хлором замещаются обе гидроксидьные группы, при действии HCl – одна и образуются так называемые хлоргидрины гликолей:

При дегидратации из 2-х молекул этиленгликоля образуется диэтиленгликоль :

Последний, может, выделяя внутримолекулярно одну молекулу воды, превращаться в циклическое соединение с двумя группами простого эфира – диоксан :

С другой сторон, диэтиленгликоль может реагировать со следующей молекулой этиленгликоля, образуя соединение тоже с двумя группами простого эфира, но с открытой цепью – триэтиленгликоль . Последовательное взаимодействие по такого рода реакции многих молекул гликоля приводит к образованию полигликолей – высокомелекулярных соединений, содержащих множество группировок простого эфира. Реакции образования полигликолей относятся к реакциям поликонденсации .

Полигликоли используются в производстве синтетических моющих средств, смачивателей, пенообразователей.

Окисление

При окислении первичные группы гликолей превращаются в альдегидные, вторичные - в кетонные группы.

Способы получения

Этиленгликоль получают щелочным гидролизом 1,2-дихлорэтана, а последний – хлорированием этилена:

Из этилена этиленгликоль может быть получен и путем окисления в водном растворе (реакция Е.Е. Вагнера, 1886) :

В природе в свободном виде почти не встречается, но очень распространены и имеют большое биологическое и практическое значение его сложные эфиры с некоторыми высшими органическими кислотами – так называемые жиры и масла.

Используется в парфюмерии, фармации, в текстильной промышленности, в пищевой промышленности, для получения нитроглицерина и т.д. Это бесцветная горючая жидкость, без запаха, сладкая на вкус. (Следует сказать, что с увеличением числа групп ОН в молекуле сладость вещества увеличивается.) Очень гигроскопичен, смешивается с водой и спиртом. Т кип. 290 о С (с разложением), d 20 4 =1,26 г/см 3 . (Температуры кипения более высокие, чем у одноатомных спиртов – больше водородных связей. Это ведет к более высокой гигроксопичности и более высокой растворимости.)

Глицерин нельзя хранить с сильными окислителями: контакт с этими веществами приводит к возникновению пожара. (Например взаимодействие с KMnO 4 , Na 2 O 2 , CaOCl 2 приводит к самовоспламенению.) Тушить рекомендуется водой и пеной.

Кислотность спиртовых групп в глицерине еще выше. В реакциях может участвовать одна, две или три группы. Глицерин также как и этиленгликоль растворяет Cu(OH) 2 , образуя интенсивно- синий раствор глицерата меди. Тем не менее, так же как одноатомные и двухатомные спирты, нейтрален на лакмус. Гидроксильные группы глицерина замещаются на галогены.

При действии водоотнимающих средств или при нагревании от глицерина отщепляется две молекулы воды (дегидратация). При этом образуется неустойчивый непредельный спирт с гидроксилом при углероде с двойной связью, который изомеризуется в непредельный альдегид акролеин (имеет раздражающий запах, как от дыма пригоревших жиров):

При взаимодействии глицерина с азотной кислотой в присутствии Н 2 SO 4 идет следующая реакция:

Нитроглицерин – тяжелое масло (d 15 = 1,601 г/см 3), не растворяется в воде, но хорошо растворимое в спирте и других органических растворителях. При охлаждении кристаллизуется (Т пл. =13 о С), очень ядовит .

Нитроглицерин – сильное бризантное взрывчатое вещество. [Синтезировал это соединение Альфред Нобель. На производстве этого соединения он создал себе колоссальное состояние. Проценты от того капитала используются до сих пор в качестве премиального фонда Нобелевских премий]. При ударе и детонации он мгновенно разлагается с выделением огромного количества газов:

4С 3 Н 5 (ОNO 2) 3 ® 12СО 2 + 6N 2 + О 2 + 10Н 2 О

Для обеспечения безопасности при проведении взрывных работ им пользуются в виде так называемого динамита – смеси, состоящей из 75 % нитроглицерина и 25 % инфузорной земли (горная порода из кремнистых оболочек диатомовых водорослей). 1 % спиртовый раствор нитроглицерина используется в качестве сосудорасширяющего средства, взрывчатыми свойствами не обладает.

В технике глицерин получают гидролизом (омылением) природных жиров и масел:

Другой способ получения глицерина заключается в сбраживании глюкозы (полученной осахариванием крахмала) в присутствии, например, бисульфита натрия по схеме:

При этом С 2 Н 5 ОН почти не образует. В последнее время глицерин получают и синтетическим путем исходя из пропилена газов крекинга или пропилена, получаемого из природных газов. По одному из вариантов синтеза, пропилен хлорируют при высокой температуре (400-500 о С), полученный хлористый аллил путем гидролиза переводят в аллиловый спирт. На последний действуют перекисью водорода, которая в присутствии катализатора и при умеренном нагревании присоединяется к спирту по двойной связи с образованием глицерина:

Простые эфиры

Простыми эфирами называют производные спиртов, образованные в результате замещения водорода гидроксильной группы спирта на углеводородный остаток . Эти соединения можно рассматривать и как производные воды, в молекуле которой углеводородными остатками замещены оба атома водорода:

Как видно из приведенной общей формулы, в молекуле простого эфира два углеводородных остатка соединены через кислород (эфирный кислород). Эти остатки могут быть либо одинаковыми, либо различными; эфиры, в которых с кислородом соединены различные углеводородные остатки, называются смешанными простыми эфирами.

Номенклатура и изомерия

Радикально-функциональные названия наиболее употребительны. Их образуют из названий связанных с кислородом радикалов и слова "эфир" (функциональное название класса); названия различных радикалов перечисляют в порядке возрастания сложности (номенклатура ИЮПАК рекомендует и алфавитное перечисление радикалов ).

Изомерия

Нетрудно заметить, что диэтиловый и метилпропиловый эфиры имеют одинаковый состав С 4 Н 10 О, т.е. это изомеры. В их молекулах радикалы, соединенные с кислородом, различаются составом. Эфирам присуща и обычна изомерия строения радикалов. Так, изомером метилпропилового эфира является метилизопропиловый эфир. Следует заметить, что простые эфиры изомерны одноатомным спиртам. Например, один и тот же состав С 2 Н 6 О имеют диметиловый эфир СН 3 -О-СН 3 и этиловый спирт СН 3 -СН 2 –ОН. А составу С 4 Н 10 О отвечают не только диэтиловый, метилпропиловый и метилизопропиловый эфиры, но и 4 бутиловых спирта состава С 4 Н 9 ОН.

Физические свойства

Диметиловый эфир кипит при -23,7 о С, метилэтиловый - при +10,8 о С. Следовательно в обычных условиях это газы. Диэтиловый эфир – уже жидкость (Т кип. = 35,6 о С). Низшие простые эфиры кипят ниже, чем спирты , из которых они получены, или чем изомерные им спирты. Например, диметиловый эфир, как уже показано – газ, тогда как метиловый спирт, из которого образуется этот эфир, - жидкость с Т кип. =64,7 о С, а изомерный диметиловому эфиру этиловый спирт – жидкость, с Т кип. =78,3 о С; это объясняется тем, что молекулы простых эфиров , не содержащие гидроксилов, в отличие от молекул спиртов не ассоциированы .

Простые эфиры мало растворимы в воде; в свою очередь вода в небольшом количестве растворяется в низших эфирах.

Химические свойства

Главной особенностью простых эфиров является их химическая инертность . В отличие от сложных эфиров они не гидролизуются и не разлагаются водой на исходные спирты. Безводные (абсолютные) эфиры в отличие от спиртов при обычных температурах не реагируют с металлическим натрием , т.к. в их молекулах нет активного водорода.

Расщепление простых эфиров происходит под действием некоторых кислот. Например, концентрированная (особенно дымящая) серная кислота поглощает пары простых эфиров, и при этом образуется сложный эфир серной кислоты (этилсерная кислота) и спирт. Например:

диэтиловый эфир этилсерная кислота этиловый спирт

Иодистоводородная кислота также разлагает простые эфиры, в результате получаются галогеналкил и спирт:

При нагревании металлический натрий расщепляет простые эфиры с образованием алкоголята и натрийорганического соединения:

Способы получения

Межмолекулярная дегидратация спиртов (см. стр. 95).

Взаимодействие алкоголятов с галогеналкилами . При этом выделяется соль галогенводородной кислоты и образуется простой эфир. Этот метод, предложенный Вильямсоном (1850), особенно удобен для получения смешанных простых эфиров. Например:

Диэтиловый (этиловый) эфир . Имеет очень большое значение, его обычно называют просто эфиром . Получается главным образом дегидратацией этилового спирта при действии концентрированной H 2 SO 4 . Этим методом диэтиловый эфир был получен впервые еще в 1540г. В. Кордусом; долгое время диэтиловый эфир неправильно называли серным эфиром , т.к. предполагали, что он должен содержать серу. В настоящее время диэтиловый эфир получают пропуская пары этилового спирта над окисью алюминия Al 2 O 3 , нагретой до 240-260 о С.

Диэтиловый эфир – бесцветная легколетучая жидкость с характерным запахом. Т кип. =35,6 о С, Т крист. = -117,6 о С, d 20 4 = 0.714 г/см 3 , т.е. эфир легче воды. Если его встряхивать с водой, то затем при стоянии эфир "отслаивается" и всплывает на поверхности воды, образуя верхний слой. Однако, при этом некоторое количество эфира растворяется в воде (6,5 ч. в 100 ч. воды при 20 о С). В свою очередь при той же температуре в 100 ч. эфира растворяется 1,25 ч. воды. Со спиртом эфир смешивается очень хорошо.

Важно иметь в виду, что обращаться с эфиром надо очень осторожно; он очень горюч, а пары его с воздухом образуют взрывоопасные – гремучие смеси. Коме того, при длительном хранении, особенно на свету, эфир окисляется кислородом воздуха и в нем образуются так называемые перекисные соединения ; последние от нагревания могут разлагаться со взрывом. Такие взрывы возможны при перегонке долго стоявшего эфира.

Эфир очень хороший растворитель жиров, масел, смол и других органических веществ, и его широко используют для этой цели, часто в смеси со спиртом.

Тщательно очищенный эфир применяют в медицине в качестве средства общего наркоза при хирургических операциях.

Дипропиловый эфир С 6 Н 14 О. Т кип. 90,7 о С. Легковоспламеняющаяся бесцветная жидкость. Растворимость в воде 0,25 % весовых при 25 о С, Т всп. = -16 о С, Т самовоспл. =240 о С; минимальная Т самовоспл. =154 о С; температурные пределы воспламенения: нижний -14 о С, верхний 18 о С.

ЛИТЕРАТУРА

1. Писаренко А.П., Хавин З.Я. Курс органической химии. М., Высшая школа, 1975. 510 с.

2. Нечаев А.П. Органическая химия. М., Высшая школа, 1976. 288 с.

3. Артеменко А.И. Органическая химия. М., Высшая школа, 2000. 536 с.

4. Березин Б.Д., Березин Д.Б. Курс современной органической химии. М., Высшая школа, 1999. 768 с.

5. Ким А.М. Органическая химия. Новосибирск, Сибирское университетское издательство, 2002. 972 с.

Видеоурок 2: Фенол: Химические свойства

Лекция: Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола


Спирты и фенолы

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Существует подразделение органических соединений на спирты и фенолы. За основу данного деления берется тип углеводородного радикала и особенности прикрепления к нему -ОН-групп.

Спирты (алканолы) - производные предельных и непредельных углеводородов, в которых ОН-группа соединена с углеводородным радикалом без непосредственного присоединения к ароматическому кольцу.

Фенолы - органические вещества, имеющие в структуре ОН-группы, непосредственно присоединенные к ароматическому кольцу.

Названные особенности положения ОН-групп, существенно влияют на различие свойств спиртов и фенолов. В соединениях фенола связь О-Н более полярна в сравнении со спиртами. Это повышает подвижность атома водорода в ОН-группе. У фенолов значительно ярче, чем у спиртов, выражены кислотные свойства.

Классификация спиртов

Существует несколько классификаций спиртов. Так, по характеру углеводородного радикала спирты подразделяются на:

  • Предельные , содержащие только предельные углеводородные радикалы. В их молекулах один или несколько атомов водорода замещены ОН-группой, к примеру:

Этандиол-1,2 (этиленгликоль)

  • Непредельные , содержащие между атомами углерода двойные или тройные связи, к примеру:


Пропен-2-ол-1 (аллиловый спирт)

  • Ароматические , содержащие в молекуле бензольное кольцо и ОН-группу, которые связаны друг с другом через атомы углерода, к примеру:

Фенилметанол (бензиловый спирт)

По атомности, т.е. числу ОН-групп , спирты делятся на:

  • Одноатомные , к примеру:

  • Двухатомные (гликоли) , к примеру:

    Трехатомные , к примеру:

    Многоатомные , содержащие более трех ОН-групп, к примеру:



По характеру связи атома углерода и ОН-группы спирты подразделяются на:

  • Первичные , в которых ОН-группа связана с первичным атомом углерода, к примеру:

  • Вторичные , в которых ОН-группа связана со вторичным атомом углерода, к примеру:

    Третичны е , в которых ОН-группа связана с третичным атомом углерода, к примеру:

Кодификатор ЕГЭ по химии требует от вас знания химических свойств предельных одноатомных и многоатомных спиртов, рассмотрим их.
Химические свойства предельных одноатомных спиртов

1. Реакции замещения

    Взаимодействие с щелочными, щелочноземельными металлами , в результате образуются алкоголяты металлов и выделяется водород. К примеру, при взаимодействии этилового спирта и натрия образуется этилат натрия:

2C 2 H 5 OH+ 2Na→ 2C 2 H 5 ONa+ H2

Важно помнить следующее правило для данной реакции: спирты не должны содержать воду, иначе образование алкоголятов станет невозможным, поскольку они легко гидролизуются.

    Реакция этерификации , т.е. взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами приводит к образованию сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами. К примеру, взаимодействие этанола с уксусной кислотой образует этилацетат (уксусно-этиловый эфир):

Механизм реакции этерификации выглядит так:


Это обратимая реакция, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию проводят при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего вещества.

    Взаимодействие спиртов с галогеноводородами . При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода. К примеру:

C 2 H 5 OH+ HCl → C 2 H 5 Cl+ H 2 O.

Это обратимая реакция.

2. Реакции элиминирования (отщепления)

    Дегидратация спиртов бывает межмолекулярной и внутримолекулярной.

При межмолекулярной одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы - от другой молекулы. В результате образуются простые эфиры (R-O-R). Условиями реакции являются присутствие концентрированной серной кислоты и нагревание 140 0 C:

С 2 Н 5 ОC 2 H 5 → C 2 H 5 -O-C 2 H 5 +H 2 O

Дегидратация этанола с этанолом привела к образованию диэтилового эфира (этоксиэтана) и воды.

СН 3 ОC 2 H 5 → CH 3 -O-C 2 H 5 +H 2 O

Дегидратация метанола с этанолом привела к образованию метилэтилового эфира (метоксиэтана) и воды.

Внутримолекулярная дегидратация спиртов в отличии от межмолекулярной протекает следующим образом: одна молекула воды отщепляется от одной молекулы спирта:

Для проведения данного типа дегидратации требуется сильное нагревание. В результате из одной молекулы спирта образуется одна молекула алкена и одна молекула воды.

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При межмолекулярной дегидратации метанола возможно образование только простого эфира (CH 3 -O-CH 3):

2CH 3 OH → CH 3 -O-CH 3 + H 2 O.

Необходимо помнить, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, то есть водород будет отщепляться от наименее гидрированного атома углерода.

    Дегидрирование спиртов:

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут к образованию кетонов:

в) Третичные спирты дегидрированию не подвергаются.


3. Реакции окисления

    Горение . Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН 3 - ОН + 3O 2 → 2CO 2 + 4H 2 O + Q.

    Окисление спиртов происходит в присутствии катализаторов Cu, Cr и др. при нагревании. Окисление происходит и в присутствии хромовой смеси (H 2 SO 4 + K 2 Cr 2 O 7) или перманганата магния (KMnO 4). Первичные спирты образуют альдегиды, к примеру:

C 2 H 5 OH+ CuO → CH 3 COH + Cu + + H 2 O.

В результате получили уксусный альдегид (этаналь, ацетальдегид), медь, воду. Если образовавшийся альдегид не удалить из реакционной среды, образуются соответствующая кислота.


Вторичные спирты в этих же условиях образуют кетоны:

Для третичных спиртов реакция окисления не характерна.

Химические свойства многоатомных спиртов

Многоатомные спирты являются более сильными кислотами, чем одноатомные.

    Для многоатомных спиртов характерны такие же, как и для одноатомных, реакции с щелочными, щелочноземельными металлами. При этом в молекуле спирта замещается разное число атомов водорода ОН-групп. В результате образуются соли. К примеру:

Поскольку многоатомные спирты обладают кислотными свойствами больше одноатомных, то они охотно реагируют не только с металлами, но и с их гидроксидами тяжелых металлов. Реакция с гидроксидом меди 2 является качественной реакцией на многоатомные спирты. Голубой осадок при взаимодействии с многоатомным спиртом переходит в ярко синий раствор.

  • Реакция этерификации, т.е. взаимодействие с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров:

C 6 H 5 ONa + CH 3 COCl → C 6 H 5 OCOCH 3 + NaCl

Многоатомные спирты – органические соединения, в молекулах которых содержится несколько гидроксильных групп (-ОН), соединённых с углеводородным радикалом

Гликоли (диолы)

  • Сиропообразная, вязкая бесцветная жидкость, имеет спиртовой запах, хорошо смешивается с водой, сильно понижает температуру замерзания воды(60%-ый раствор замерзает при -49 ˚С) –это используется в системах охлаждения двигателей – антифризы.
  • Этиленгликоль токсичен – сильный Яд! Угнетает ЦНС и поражает почки.

Триолы

  • Бесцветная, вязкая сиропообразная жидкость, сладкая на вкус. Не ядовит. Без запаха. Хорошо смешивается с водой.
  • Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей.

Номенклатура

В названиях многоатомных спиртов (полиолов ) положение и число гидроксильных групп указывают соответствующими цифрами и суффиксами -диол (две ОН-группы), -триол (три ОН-группы) и т.д. Например:

Получение многоатомных спиртов

I . Получение двухатомных спиртов

В промышленности

1. Каталитическая гидратация оксида этилена (получение этиленгликоля):

2. Взаимодействие дигалогенпроизводных алканов с водными растворами щелочей :

3. Из синтез-газа :

2CO + 3H 2 250°,200 МПа ,kat →CH 2 (OH)-CH 2 (OH)

В лаборатории

1. Окисление алкенов :

II . Получение трёхатомных спиртов (глицерина)

В промышленности

Омыление жиров (триглицеридов):

Химические свойства многоатомных спиртов

Кислотные свойства

1. С активными металлами:

HO-CH 2 -CH 2 -OH + 2Na → H 2 + NaO-CH 2 -CH 2 -ONa (гликолят натрия)

2. С гидроксидом меди( II ) – качественная реакция!


Упрощённая схема

Основные свойства

1. С галогенводородными кислотами

HO-CH 2 -CH 2 -OH + 2HCl H+ ↔ Cl-CH 2 -CH 2 -Cl + 2H 2 O

2. С азотной кислотой

Т ринитроглицерин - основа динамита

Применение

  • Этиленгликоль производства лавсана , пластмасс , и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время); сырьё в органическом синтезе.
  • Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом. Глицерин находит широкое применение в косметике , пищевой промышленности , фармакологии , производстве взрывчатых веществ . Чистый нитроглицерин взрывается даже при слабом ударе; он служит сырьем для получения бездымных порохов и динамита ― взрывчатого вещества, которое в отличие от нитроглицерина можно безопасно бросать. Динамит был изобретен Нобелем, который основал известную всему миру Нобелевскую премию за выдающиеся научные достижения в области физики, химии, медицины и экономики. Нитроглицерин токсичен, но в малых количествах служит лекарством , так как расширяет сердечные сосуды и тем самым улучшает кровоснабжение сердечной мышцы.

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.

Примеры спиртов:

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами .

Примеры фенолов:

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Реакции замещения

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al 2 O 3), при этом образуются алкоголяты металлов и выделяется водород:

Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:

CH 3 OK + Н 2 О = СН 3 ОН + KOH

2) Реакция этерификации

Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.

Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al 2 O 3) могут быть получены первичные, вторичные или третичные амины:

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Реакции элиминирования (отщепления)

Дегидратация

Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.

При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH 3 -O-CH 3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

Дегидрирование спиртов

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Реакции окисления

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН 3 -ОН + 3O 2 = 2CO 2 + 4H 2 O + Q

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al 2 O 3 ); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Бо льшая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами и является обратимой. В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.

В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Реакции с участием гидроксильной группы

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:

Бо льшая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:

Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту:

Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

Реакции замещения в ароматическом ядре

Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара- положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

Реакции присоединения

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов.

Спирты являются производными углеводородов, в молекулах которых один или несколько атомов водорода возле насыщенного атома углерода замещен на гидроксигруппу - ОН. Экспериментально доказано, что количество гидроксилов в молекуле спирта не может превышать количество углеводородных атомов. В зависимости от природы радикала, различают ациклические (алифатического ряда) и циклические спирты; по количеству гидроксильных групп - одно-, двух-, трех- и многоатомные спирты; по насыщенности - насыщенные и ненасыщенные; месту локализации гидроксильной группы в углеводородной цепи - первичные, вторичные и третичные спирты.

Многоатомные спирты - производные алканов, в молекулах которых более трех атомов водорода замещены на гидроксигруппы - ОН. Для многоатомных спиртов как производных моносахаридов характерна оптическая изомерия и изомерия положения в углеводородной цепи ОН-группы. Оптическая изомерия связана со способностью некоторых групп органических веществ в растворах проявлять оптическую активность. Оптическая активность веществ определяется с помощью поляриметра.

На многоатомные спирты

Наиболее распространенной качественной реакцией на многоатомные спирты является их взаимодействие с В процессе реакции гидроксид растворяется, при этом образуется хелатный комплекс фиолетового цвета.

Четырехатомные спирты С4Н6(ОН)4 называются тетритами, пятиатомные С5Н7(ОН)5 - пентитами, шестиатомные спирты С6Н8(ОН)6 - гекситами. В каждой такой группе различают отдельные спирты, которые имеют исторические названия: эритрит, арабит, сорбит, ксилит, дульцит, манит и т.д.

Получение многоатомных спиртов

Эти спирты синтезируют путем восстановления моносахаридов, конденсации альдегидов с формальдегидом в щелочной среде. Очень часто многоатомные спирты получают из природного сырья. Некоторые спирты экстрагируют из плодов рябины.

Многоатомные спирты - оптически активные соединения, хорошо растворимые в воде. В ИК- и УФ-спектрах имеют полосы поглощения, типичные для ОН-групп обусловлены наличием ОН-группы. При взаимодействии этих веществ с образуются алкоголяты - сахараты. При окислении гидроксила, который локализуется возле первого атома углерода (С1) образуются моносахариды.

Многоатомные спирты: основные представители

Эритрит НОСН2(СНОН)2СН2ОН - кристаллическое вещество, плавится при 121,5 °С. Указанный спирт содержится в лишайниках и мхах. Эритрит можно получить вследствие восстановления 1,3-бутадиена и эритрозы. Указанный спирт используют при изготовлении взрывчатых соединений, быстросохнущих красок, эмульгаторов.

Ксилит НОСН2(СНОН)3СНОН - сладкие кристаллы, хорошо растворимые в воде, плавятся при температуре 61,5 градусов. Указанный спирт можно синтезировать путем восстановления ксилозы. Ксилит используется в пищевой индустрии при изготовлении продуктов питания для диабетиков, а также при производстве алкидных смол, олиф и поверхностно-активных веществ.

Пентаэритрит С(СН2ОН)4 - твердое вещество, плохо растворимое в воде. Получают при взаимодействии формальдегида с ацетальдегидом в присутствии Са(ОН)2. Используется при производстве полиэфиров, алкидных смол, тетрапентаэритрита, поверхностно-активных веществ, пластификаторов для получения поливинилхлорида, синтетических масел. Проявляет наркотические свойства.

Манит НОСН2(СНОН)4СН2ОН - сладкое на вкус вещество, плавится при температуре 165 градусов. Содержится в мхах, грибах, водорослях, высших растениях. Применяют в качестве диуретика и как компонент косметических изделий (мазей).

Д-Сорбит НОСН2(СНОН)4СН2ОН - плавится при температуре 96 градусов. Этим спиртом богаты плоды рябины. Сорбит получают при восстановлении глюкозы. Указанный спирт является промежуточным продуктом в синтезе витамина С, проявляет мочегонное действие, используется в качестве заменителя сахарозы для диабетиков.