Разработки

Решение диофантовых уравнений алгоритмом евклида. Методы решения диофантовых уравнений. Что дала мне работа над проектом

Решение диофантовых уравнений алгоритмом евклида. Методы решения диофантовых уравнений. Что дала мне работа над проектом

Алгебраические неравенства или их системы с рациональными коэффициентами, решения которых ищутся в интегральных или целых числах. Как правило, количество неизвестных в диофантовых уравнениях больше. Таким образом, они также известны как неопределенные неравенства. В современной математике указанное выше понятие применяется к алгебраическим уравнениям, решения которых ищутся в алгебраических целых числах некоторого расширения поля Q-рациональных переменных, поля p-адических и т. д.

Истоки данных неравенств

Исследования уравнений Диофанта находится на границе между теорией чисел и алгебраической геометрией. Поиск решений в целых переменных является одной из старейших математических задач. Уже в начале второго тысячелетия до н.э. древним вавилонянам удалось решить системы уравнений с двумя неизвестными. Эта отрасль математики в наибольшей степени процветала в Древней Греции. Арифметика Диофанта (примерно, 3-го века н.э.) является значимым и главным источником, который содержит различные типы и системы уравнений.

В этой книге Диофант предвидел ряд методов изучения неравенств второй и третьей степеней, которые были полностью развиты в XIX веке. Создание теории рациональных чисел этим исследователем Древней Греции привело к анализу логических решений неопределенных систем, которые систематически сопровождаются в его книге. Несмотря на то, что в его работе содержатся решения конкретных диофантовых уравнений, есть основания полагать, что он также был знаком с несколькими общими методами.

Изучение этих неравенств обычно связано с серьезными трудностями. Ввиду того, что в них присутствуют многочлены с целыми коэффициентами F (x,y1,…, y n). На основе этого, были созданы выводы, что нет единого алгоритма, с помощью которого можно было бы для любого заданного определить x, выполняется ли уравнение F (x, y 1 ,…., y n). Ситуация разрешима для y 1 , …, y n . Примеры таких многочленов могут быть записаны.

Простейшее неравенство

ax + by = 1, где a и b - относительно целые и простые числа, для него имеется огромное количество выполнений (если x 0, y 0 сформирован результат, то пара переменных x = x 0 + b n и y = y 0 -an , где n - произвольное, также будет рассматриваться как выполнение неравенства). Другим примером диофантовых уравнений служит x 2 + y 2 = z 2 . Положительные интегральные решения этого неравенства представляют собой длину малых сторон x, y и прямоугольных треугольников, а также гипотенузы z с целыми боковыми размерами. Эти числа известны как пифагорейские числа. Все триплеты относительно простых указанных выше переменных даются формулами x=m 2 - n 2 , y = 2mn, z = m 2 + n 2 , где m и n- целые и простые числа (m>n>0).

Диофант в своей «Арифметике» занимается поиском рациональных (не обязательно интегральных) решений специальных типов своих неравенств. Общая теория решения диофантовых уравнений первой степени была разработана К. Г. Башетом в 17 веке. Другие ученые в начале XIX века в основном изучали подобные неравенства типа ax 2 +bxy + cy 2 + dx +ey +f = 0, где a, b, c, d, e, и f общие, неоднородные, с двумя неизвестными второй степени. Лагранж использовал непрерывные дроби в своем исследовании. Гаусс для квадратичных форм разработал общую теорию, лежащую в основе решения некоторых типов.

В исследованиях этих неравенств второй степени значительные успехи были достигнуты только в XX веке. У А. Туэ было установлено, что диофантово уравнение a 0 x n + a 1 x n-1 y +…+a n y n =c, где n≥3, a 0 ,…,a n ,c - целые числа, а a 0 t n + … + a n не может иметь бесконечное количество целочисленных решений. Однако метод Туэ не получил должного развития. А. Бейкер создал эффективные теоремы, дающие оценки на выполнении некоторых уравнений такого рода. Б. Н. Делоне предложил другой метод исследования, применимый к более узкому классу этих неравенств. В частности, вид ax 3 + y 3 = 1 полностью разрешим этим способом.

Диофантовы уравнения: методы решения

Теория Диофанта имеет много направлений. Таким образом, хорошо известной проблемой в этой системе является гипотеза, согласно которой не существует нетривиальное решение диофантовых уравнений x n + y n = z n если n ≥ 3 (вопрос Ферма). Изучение целочисленных выполнений неравенства является естественным обобщением проблемы пифагорейских триплетов. Эйлер получил положительное решение задачи Ферма для n = 4. В силу этого результата она относится к доказательству отсутствующих целочисленных, ненулевых исследований уравнения, если n - это нечетное простое число.

Исследование, касающееся решения, не было завершено. Трудности с его выполнением связаны с тем, что простая факторизация в кольце алгебраических целых чисел не единственна. Теория дивизоров в этой системе для многих классов простых показателей n позволяет подтвердить справедливость теоремы Ферма. Таким образом, существующими методами и способами выполняется линейное диофантово уравнение с двумя неизвестными.

Виды и типы описываемых задач

Арифметика колец алгебраических целых чисел также используется во многих других задачах и решениях диофантовых уравнений. Например, такие методы были применены при выполнении неравенств вида N(a 1 x 1 +…+ a n x n) = m, где N(a) - норма a, и x 1 , …, x n найдены интегральные рациональные переменные. Этот класс включает уравнение Пелля x 2- dy 2 =1.

Значения a 1, …, a n которые появляются, эти уравнения подразделяют на два типа. Первый тип - так называемые полные формы - включают в себя уравнения, в которых среди a есть m линейно независимые числа над полем рациональных переменных Q, где m = , в которых присутствует степень алгебраических показателей Q (a1,…, a n) над Q. Неполными видами являются те, в которых максимальное количество a i меньше, чем m.

Полные формы проще, их исследование завершено, и можно описать все решения. Второй тип - неполные виды - сложнее, а разработка подобной теории еще не завершена. Такие уравнения изучаются с помощью диофантовых приближений, которые включают неравенство F(x,y)=C, где F (x,y) - многочлен степени n≥3 является неприводимым, однородным. Таким образом, можно предположить, что y i → ∞. Соответственно, если y i достаточно велико, то неравенство будет противоречить теореме Туэ, Зигеля и Рота, из которой выходит, что F(x,y)=C, где F- форма третьей степени или выше, неприводимая не может иметь бесконечное количество решений.

Данный пример составляет довольно узкий класс среди всех. Например, несмотря на их простоту, x 3 + y 3 + z 3 = N, а также x 2 +y 2 +z 2 +u 2 = N не входят в этот класс. Изучение решений является достаточно тщательно исследованной ветвью диофантовых уравнений, где в основе лежит представление квадратичными формами чисел. Лагранж создал теорему, которая гласит, что выполнение существует для всех естественных N. Любое натуральное число может быть представлено в виде суммы трех квадратов (теорема Гаусса), но оно не должно иметь вид 4 a (8K-1), где a и k неотрицательные целые показатели.

Рациональные или интегральные решения системы диофантового уравнения типа F (x 1 , …, x n) = a, где F (x 1 , …, x n) является квадратичной формой с целыми коэффициентами. Таким образом, согласно теореме Минковского-Хассе, неравенство ∑a ij x i x j = b где a ij и b рационально, имеет интегральное решение в действительных и p-адических числах для каждого простого числа p только тогда, когда оно разрешимо в этой структуре.

Из-за присущих трудностей изучение чисел с произвольными формами третьей степени и выше изучалось в меньшей степени. Главным методом выполнения является способ тригонометрических сумм. В данном случае число решений уравнения явно выписывается в терминах интеграла Фурье. После чего метод окружения используется для выражения количества выполнения неравенства соответствующих конгруэнций. Способ тригонометрических сумм зависит от алгебраических особенностей неравенств. Существует большое количество элементарных методов для решения линейных диофантовых уравнений.

Диофантов анализ

Отделение математики, предметом которого является исследование интегральных и рациональных решений систем уравнений алгебры методами геометрии, из той же сферы. Во второй половине XIX века появление этой теории чисел привело к изучению уравнений Диофанта из произвольного поля с коэффициентами, и решения рассматривались либо в нем, либо в его кольцах. Система алгебраических функций развивалась параллельно с числами. Основная аналогия между двумя, которая была подчеркнута Д. Гильбертом и, в частности, Л. Кронекером, привела к равномерному построению различных арифметических концепций, которые обычно называются глобальными.

Это особенно заметно, если изучаемые алгебраические функции над конечным полем констант являются одной переменной. Такие понятия, как теория полей классов, делитель, а также ветвление и результаты являются хорошей иллюстрацией вышеизложенного. Эта точка зрения была принята в системе диофантовых неравенств только позднее, а систематическое исследование не только с численными, но и с коэффициентами, которые являются функциями, началось только в 1950-х годах. Одним из решающих факторов в этом подходе было развитие алгебраической геометрии. Одновременное изучение полей чисел и функций, которые возникают как две одинаково важные стороны одного и того же субъекта, не только давало изящные и убедительные результаты, но приводило к взаимному обогащению двух тем.

В алгебраической геометрии понятием многообразия заменяется неинвариантный набор неравенств над данным полем K, а их решения заменяются рациональными точками со значениями в K или в конечном его расширении. Можно, соответственно, сказать, что фундаментальная задача диофантовой геометрии заключается в изучении рациональных точек алгебраического множества X(K), X при этом - определенные числа в поле K. Целочисленное выполнение имеет геометрический смысл в линейных диофантовых уравнениях.

Исследования неравенств и варианты выполнения

При изучении рациональных (или интегральных) точек на алгебраических многообразиях возникает первая проблема, заключающаяся в их существовании. Десятая задача Гильберта сформулирована как проблема нахождения общего метода решения этого вопроса. В процессе создания точного определения алгоритма и после того, как было доказано, что подобных выполнений для большого числа задач не существует, проблема приобрела очевидный отрицательный результат, и наиболее интересным вопросом является определение классов диофантовых уравнений, для которых существует указанная выше система. Наиболее естественным подходом, с алгебраической точки зрения, является так называемый принцип Хассе: начальное поле K изучается вместе с его пополнениями K v по всем возможным оценкам. Поскольку X(K) = X(K v) являются необходимым условием существования, а K точка учитывает, что множество X(K v) не пусты для всех v.

Важность заключается в том, что он сводит две проблемы. Вторая намного проще, она ​​разрешима известным алгоритмом. В частном случае, когда многообразие X проективно, лемма Гензеля и его обобщения делают возможным дальнейшее сокращение: проблему можно свести к изучению рациональных точек над конечным полем. Затем он решается строить концепцию либо путем последовательного исследования, либо более эффективными методами.

Последнее важное соображение состоит в том, что множества X(K v) являются непустыми для всех v, за исключением конечного числа, так что количество условий всегда конечное, и они могут быть эффективно проверены. Однако принцип Хассе не применим к кривым степени. Например, 3x 3 + 4y 3 =5 имеет точки во всех p-адических числовых полях и в системе но не имеет рациональных точек.

Этот способ послужил отправным пунктом для построения концепции, описывающей классы главных однородных пространств абелевых многообразий для выполнения «отклонения» от принципа Хассе. Оно описывается в терминах специальной структуры, которые могут быть связаны с каждым многообразием (группа Тейта-Шафаревича). Основная трудность теории заключается в том, что методы вычисления групп сложно получить. Эта концепция также была распространена на другие классы алгебраических многообразий.

Поиск алгоритма выполнения неравенств

Другая эвристическая идея, используемая при изучении диофантовых уравнений, заключается в том, что если число переменных, участвующих в множестве неравенств - велико, то система обычно имеет решение. Однако это очень трудно доказать для любого конкретного случая. Общий подход к проблемам этого типа использует аналитическую теорию чисел и основан на оценках тригонометрических сумм. Этот метод первоначально применялся к специальным видам уравнений.

Однако впоследствии было доказано с его помощью, что если форма нечетной степени - это F, в d и n переменных и с рациональными коэффициентами, то n достаточно велико по сравнению с d, таким образом, имеет рациональную точку проективная гиперповерхность F = 0. Согласно гипотезе Артина, этот результат верен, даже если n > d 2 . Это доказано только для квадратичных форм. Аналогичные проблемы могут быть заданы и для других полей. Центральной проблемой диофантовой геометрии является структура множества целых или рациональных точек и их изучение, а первый вопрос, который нужно уточнить, состоит в том, является ли это множество конечным. В этой задаче ситуация обычно имеет конечное количество выполнений, если степень системы намного больше, чем число переменных. Это и есть основное предположение.

Неравенства на линиях и кривых

Группа X(K) может быть представлена ​​как прямая сумма свободной структуры ранга r и конечной группы порядка n. С 1930-х годов изучается вопрос о том, ограничены ли эти числа на множестве всех эллиптических кривых над данным полем K. Ограниченность кручения n была продемонстрирована в семидесятых годах. Существуют кривые произвольного высокого ранга в функциональном случае. В числовом случае по-прежнему нет ответа на этот вопрос.

Наконец, гипотеза Морделла утверждает, что количество интегральных точек является конечным для кривой рода g>1. В функциональном случае эта концепция была продемонстрирована Ю. И. Маниным в 1963 году. Основным инструментом, используемым при доказательстве теорем конечности в диофантовой геометрии, является высота. Из алгебраических многообразий размерности выше единицы абелевы многообразия, которые являются многомерными аналогами эллиптических кривых, были наиболее тщательно изучены.

А. Вейль обобщил теорему о конечности числа образующих группы рациональных точек на абелевы многообразия любой размерности (концепция Морделла-Вейля), распространив ее. В 1960-х годах появилась гипотеза Берча и Суиннертона-Дайера, усовершенствовавшая эту и группу и дзета-функции многообразия. Числовые доказательства подтверждают эту гипотезу.

Проблема разрешимости

Задача нахождения алгоритма, с помощью которого можно определить, имеет ли какое-либо диофантово уравнение способ решения. Существенной особенностью поставленной задачи является поиск универсального метода, который был бы подходящим для любого неравенства. Такой метод также позволил бы решать указанные выше системы, так как он эквивалентен P21+⋯+P2k=0.п1= 0 , ... , PK= 0п = 0,...,пК = 0 или п21+ ⋯ + P2К= 0 . п12+⋯+пК2=0. Проблема нахождения такого универсального способа обнаружения решений для линейных неравенств в целых числах была поставлена ​​Д. Гильбертом.

В начале 1950-х годов появились первые исследования, направленные на доказательство не существования алгоритма решения диофантовых уравнений. В это время появилась гипотеза Дэвиса, в которой говорилось, что любое перечислимое множество также принадлежит греческому ученому. Поскольку примеры алгоритмически неразрешимых множеств известны, но являются рекурсивно перечислимыми. Следует, что гипотеза Дэвиса верна и проблема разрешимости этих уравнений имеет отрицательное выполнение.

После этого для гипотезы Дэвиса осталось доказать, что существует метод преобразования неравенства, которое также (или не имело) в то же время решение. Было показано, что такое изменение диофантового уравнения возможно, если оно с указанными двумя свойствами: 1) в любом решении этого типа v uu ; 2) для любого k существует выполнение, в котором присутствует экспоненциальный рост.

Пример линейного диофантового уравнения этого класса завершил доказательство. Задача о существовании алгоритма разрешимости и распознавания в рациональных числах этих неравенств считается по-прежнему важным и открытым вопросом, который не изучен в достаточной степени.

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №1

г. Павлово.

Научно-исследовательская работа

Методы решения диофантовых уравнений.

Отделение: физико-математическое

Секция: математика

Выполнил:

ученик 8 А класса Трухин Николай (14 лет)

Научный руководитель:

учитель математики

Лефанова Н. А.

г. Павлово

2013 г.

Оглавление

I Введение…………………………………………………………………………3

II Обзор литературы……………………………………………………………....5

III Основная часть…………………………………………………………………6

IV Заключение…………………………………………………………………...15

V Список литературы……………………………………………………………16

VI Приложение…………………………………………………………………..17

    Введение.

В 2011-2012 году я выполнял исследовательскую работу на тему: «Решение уравнений в Древней Греции и Индии». При работе над ней я познакомился с трудами Диофанта Александрийского и Мухаммеда аль - Хорезми. В своей прошлой работе я рассмотрел некоторые способы решения уравнений первой степени с двумя неизвестными, познакомился с некоторыми старинными задачами, приводящими к решению уравнений первой степени с двумя неизвестными.

Мухаммед Бен Мусса аль – Хорезми, - или Магомед сын Моисея Хорезмского, состоящий членом «дома мудрости» в Иране, около 820 года нашего летоисчисления написал книгу, где учил решать простые и сложные вопросы арифметики, которые необходимы людям при дележе наследства, составлении завещаний, разделе имущества и судебных делах, в торговле, всевозможных сделках. С именем аль – Хорезми связаны понятия «алгебра», «арабские цифры», «алгоритм». Он отделил алгебру от геометрии, внёс большой вклад в математику исламского средневековья. Мухаммед аль – Хорезми был известен и уважаем, как при жизни, так и после смерти.

Но мне захотелось больше узнать о Диофанте. И тема моего исследования в этом году: «Методы решения диофантовых уравнений»

Диофант Александрийский - один из самых своеобразных древнегреческих математиков, труды которого имели большое значение для алгебры и теории чисел. Из работ Диофанта самой важной является «Арифметика», из 13 книг которой, только 6 сохранились до наших дней. В сохранившихся книгах содержится 189 задач с решениями. В первой книги изложены задачи, приводящиеся к определенным уравнениям первой и второй степени. Остальные пять книг содержат в основном неопределенные уравнения (неопределенными называются уравнения, содержащие более чем одно неизвестное). В этих книгах ещё нет систематической теории неопределённых уравнений, методы решения меняются от случая к случаю. Диофант довольствуется одним решением, целым или дробным, лишь бы оно было положительным. Тем не менее, методы решения неопределённых уравнений, составляют основной вклад Диофанта в математику. В символике Диофанта был один только знак для неизвестного. Решая неопределённые уравнения, он применял в качестве нескольких неизвестных произвольные числа, вместо которых можно было взять и любые другие, что и сохраняло характер общности его решений.

Цель моей работы:

1.Продолжить знакомство с диофантовыми уравнениями.

2.Исследовать методы перебора и рассеивания (измельчения) при решении диофантовых уравнений.

3.Исследовать возможность применения диофантовых уравнений для решения некоторых практических задач.

II . Обзор литературы.

При написании работы мной использовалась следующая литература:

Мной использована информация о Диофанте и аль – Хорезми.

Книга посвящена методам Диофанта при решении неопределённых уравнений. В ней рассказывается о жизни и самого Диофанта. Эта информация использована мной в работе.

В книги рассказывается об истории алгебры с древних времён. Я использовал информацию о теории уравнений, начиная с древности.

В этой книге собрано около 200 статей, посвященных основным понятиям математики и её приложения. Мной были использованы материалы статей «Алгебра», «Уравнения», «Диофантовы уравнения»

Из книги взяты тексты задач для практического использования.

    По теме мной использовался сайт:

http :// ru . wikipedia . org (информация об аль – Хорезми и Диофанте. О методах решения диофантовых уравнений).

    Основная часть

В наши дни каждый, кто занимался математикой, слышал о диофантовых уравнениях. Алгебраические уравнения с целыми коэффициентами, решаемые во множестве целых (реже рациональных) чисел, вошли в историю математики как диофантовы. Наиболее изучены диофантовы уравнения 1 и 2 степени. В содержании моей работы включены задачи, которые сводятся к решению уравнения первой степени с двумя неизвестными

(1)

Рассмотрим задачу.

Задача 1. В клетке находится x фазанов и у кроликов. Сколько в клетке фазанов и кроликов, если общее количество ног равно 62.

Общее число ног можно записать с помощью уравнения 2х+4у=62 (2)

Это равенство, которое я составил по условию задачи, называют уравнением с двумя переменными. Данное уравнение называют линейным уравнением. Линейные уравнения играют важную роль при решении различных задач. Напомню основные положения, связанные с этим понятием.

Линейным уравнением с двумя переменными называется уравнение вида ax +by =c , где x и у – переменные, а, b и с – некоторые числа.

Однозначно определить из уравнения (2) значения x и y нельзя. Даже если ограничиться только натуральными значениями переменных, здесь могут быть такие случаи: 1 и 15, 3 и 14, 5 и 13 и т. д.

Пара чисел (a , b ) называется решением уравнения с двумя переменными, если при замене x на а и y на b получаем истинное равенство.

Каждому уравнению с двумя переменными соответствует множество его решений, т. е. множество, состоящее из всех пар чисел (a , b ), при подстановке которых в уравнение получается истинное равенство. При этом, конечно, если заранее указаны множества Х и Y , которые могут принимать неизвестные x и у, то надо брать лишь такие пары (a , b ), для которых а принадлежит Х и b принадлежит Y .

Пару чисел (a , b ) можно изобразить на плоскости точкой М, имеющей координаты а и b , М= М (a , b ). Рассматривая изображения всех точек множества решений уравнения с двумя неизвестными, получим некоторое подмножество плоскости. Его называют графиком уравнения.

Можно доказать, что графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов не равен нулю, является прямая линия. Для построения графика этого уравнения достаточно взять две точки с координатами и провести через них прямую. Графический метод решения я использовал в предыдущей работе.

Два уравнения с двумя переменными, имеющие одни и те же решения называются равносильными.

Например, равносильны уравнения х+2у=5 и 3х+6у=15 – любая пара чисел, удовлетворяющая одному из этих уравнений, удовлетворяет и второму.

Уравнения с двумя переменными обладают такими же свойствами, как и уравнения с одной переменной:

1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Существует несколько способов решения диофантовых уравнений:

    Метод перебора вариантов

    Использование алгоритма Евклида

    С использованием цепной дроби

    Метод рассеивания (измельчения)

    При помощи программирования на языке программирования Паскаль

В своей работе я исследовал методы – перебор вариантов и рассеивание (измельчения)

Рассматривая способ перебора вариантов, необходимо учитывать количество возможных решений уравнения. Например, этот способ можно применить, решая следующую задачу:

Задача 2 . Андрей работает летом в кафе. За каждый час ему платят 10 р. И высчитывают 2 р. за каждую разбитую тарелку. На прошедшей неделе он заработал 180 р. Определите, сколько часов он работал и сколько разбил тарелок, если известно, что он работает не более 3 ч в день.

Решение.

Пусть x часов он всего работал в неделю, тогда 10х р. ему заплатили, но он разбил у тарелок, и с него вычли р. Имеем уравнение 10х – 2у =180 , причем x меньше или равен 21. Получим: 5х-у=90, 5х=90+у, х=18+у:5.

Так как x целое число, то у должно нацело делится на 5, чтобы в правой части получилось целое число. Возможны четыре случая

    у=0, х=18, т. е. решением является пара – (18, 0);

    у=5, х=19, (19, 5);

    у=10, х=20, (20, 10);

    у=15, х=21, (21, 15).

Эту задачу я решил, используя способ перебора вариантов. Ответ содержит четыре возможных варианта. Я попробовал решить этим способом ещё несколько задач.

Задача 3. Из двухрублевых и пятирублевых монет составлена сумма в 23 рубля. Сколько среди этих монет двухрублевых?

Решение.

Пусть x – количество двухрублевых монет, у – количество пятирублевых монет. Составим и решим уравнение: 2х+5у=23; 2х=23–5у; x = (23 – 5у):2; x =(22+1 – 5у):2, почленно поделим 22 на 2 и (1 – 5у) на 2, получим: x = 11 + (1 – 5у):2.

Так как x и y натуральные числа по условию задачи, то левая часть уравнения есть натуральное число, значит, и правая часть должна быть натуральным числом. К тому же, чтобы получить в правой части число натуральное, нужно чтобы выражение (1 – 5у) нацело делилось на 2. Осуществим перебор вариантов.

    y =1, х=9, то есть двухрублевых монет может быть 9;

    у=2, при этом выражение (1 – 5у) не делится нацело на 2;

    у=3, х=4, то есть двухрублевых монет может быть 4;

    при у больше или равном 4 значение x не является числом натуральным.

Таким образом, ответ в задаче следующий: среди монет 9 или 4 двухрублевых.

Задача 4. Шехерезада рассказывает свои сказки великому правителю. Всего она должна рассказать 1001 сказку. Сколько ночей потребуется Шехерезаде, чтобы рассказать все свои сказки, если x ночей она будет рассказывать по 3 сказки, а остальные сказки по 5 за у ночей

Решение.

Сказочнице потребуется x + у ночей, где x и у – натуральные корни уравнения 3х+5у=1001

x = (1001 – 5у):3; так как x – натуральное число, то и в правой части равенства также должно быть натуральное число, а значит выражение (1001 – 5у) должно нацело делиться на 3.

Осуществим перебор вариантов.

у=1, 1001 – 5у=1001-5= 996, 996 делится на 3, следовательно, х=332; решение (332;1);

у=2, 1001– 10=991, 991 не делится на 3;

у=3, 1001 – 15 = 986; 986 не делится на3;

у =4, 1001 – 20 = 981, 981 делится на 3, следовательно, x = 327, решение (327;4) и т. д.

В этой задаче существует 67 пар возможных корней, я не стал показывать все решения данной задачи, т. к. это занимает много времени.

Уравнение ax + by = c (1) в приведённых задачах я решал способом перебора вариантов. Я уяснил для себя, что способ перебора вариантов не всегда эффективен для решения данной задач, так как для нахождения всех решений уравнения требуются значительные временные затраты. И, на мой взгляд, в настоящее время он неактуален.

Поэтому я решил задачу про Шехерезаду, используя метод рассеивания (измельчения).

Метод рассеивания – это общий метод для решения в целых числах неопределённых уравнений первой степени с целыми коэффициентами.

Итак, решим задачу про Шехерезаду методом рассеивания:

Обратимся к уравнению 3х + 5у = 1001.

Перепишем его иначе: 3х= 1001- 5у; 3х= 1001 - 2у - 3у;

x = – y +
и обозначим x l = у + x

В результате уравнение примет вид 3х 1 = 1001 – 2у или

у = –x l
.

Если вновь произвести замену у 1 = у + х 1 , то придем к уравнению

x 1 + 2у 1 = 1001. Заметим, что коэффициенты при неизвестных уменьшились - измельчились.

Здесь коэффициент при x 1 , равен 1, а поэтому при любом целом у 1 = t число х 1 тоже целое. Остается выразить исходные переменные через t :

х 1 = 1001 – 2 t , следовательно, у = – 1001 + 3 t , а x = 2002 – 5 t . Итак, получаем бесконечную последовательность (2002 – 5 t , – 1001 + 3 t ) целочисленных решений. Внешний вид формул для нахождения значений переменных отличается от решений, полученных ранее, но с учетом условия задачи, корни получаются те же самые. Так, пара (332;1) получается при t =334.

На мой взгляд, этот метод не только более удобный (у него есть алгоритм действий), но и интересный. Известно, что этот метод в первые применил в начале VI в. индийский математик Ариабхатта.

В прошлом году я показывал решение древней индийской задачи Брахмагупты методам рассеивания, которое предложил сам Брахмагупта. Решение было нерациональным.

Оно представлено ниже:

«Найти два целых числа, зная, что разность произведений первого на 19 и второго на 8 равно 13. »

В задаче требуется найти все целые решения уравнений.

Решение:

(1) 19x – 8y = 13

Выражаю y – неизвестное с наименьшим по абсолютной величине коэффициентом через x , получаю:

(2) y = (19x 13)/8

Нужно теперь узнать, при каких целых значениях x соответствующие значения y являются тоже целыми числами. Перепишу уравнение (2) следующим образом:

(3) y = 2x + (3x – 13)/8

Из (3) следует, что y при целом x принимает целое значение только в том случае, если выражение (3x -13)/8 является целым числом, скажем y 1 . Полагая

(4) (3x - 13)/8 = y 1 ,

вопрос сводится к решению в целых числах уравнения (4) с двумя неизвестными x и y 1 ; его можно записать так:

(5) 3x – 8y 1 = 13.

Это уравнение имеет по сравнению с первоначальным (1) преимущество, что 3 – наименьшее из абсолютных величин коэффициентов при неизвестных – меньше, чем в (1), т.е. 8. Это было достигнуто благодаря тому, что коэффициент при x (19) был заменен остатком от деления на 8.

Продолжая тем же способом, мы получим из (5):

(6) x = (8y 1 +13)/3 = 2y 1 + (2y 1 + 13)/3.

Итак, неизвестное x при целом y 1 только тогда принимает целые значения, когда (2y 1 + 13)/3 есть целое число, скажем y 2 :

(7) (2y 1 + 1)/3 = y 2 ,

или

(8) 3y 2 2 y 1 = 13.

(9) y 1 = (3y 2 - 13)/2 = y 2 + (y 2 - 13)/2

Полагая

(10) (y 2 - 13)/2 = y 3 ,

получаю

(11) y 2 2 y 3 = 13.

Это самое простое из всех рассмотренных неопределенных уравнений, так как один из коэффициентов равен 1.

Из (11) получаю:

(12) y 2 = 2y 3 + 13.

Отсюда видно, что y 2 принимают целые значения при любых целых значениях y 3 . Из равенств (6), (9), (12), (3) путем последовательных подстановок можно найти следующие выражения для неизвестных x и y уравнения (1):

x = 2y 1 + y 2 = 2(y 2 + y 3 ) + y 2 = 3y 2 + 2y 3 = 3(2y 2 + 13) + 2y 3 = 8y 3 + 39;

у = 2x + y 1 = 2(8y 3 + 39) + y 2 + y 3 = 19y 3 +91.

Таким образом, формулы

x = 8y 3 + 39,

y = 19y 3 + 91.

При y 3 = 0, + 1,+ 2, + 3, … дают все целые решения уравнения (1).

В следующей таблице приведены примеры таких решений.

Таблица 1.

y3

x

y

Решим эту задачу рационально. В решении используется определённый алгоритм.

Задача 5.

Найти два числа, если разность произведений первого на 19 и второго на 8 равна 13.

Решение. Требуется решить уравнение 19х - 8у = 13

Перепишем его иначе: 8y =19x –13; 8y =16x +3x –13; у = 2х +

и обозначим y 1 = у - 2х.

В результате уравнение примет вид 8у 1 = Зx - 13 или x = 2y 1
.

Если вновь произвести замену х 1 = x - 2у 1 , то придем к уравнению

3x l - 2у 1 = 13.

Коэффициенты при неизвестных уменьшились - измельчились. Дальнейшее измельчение: y 1 = x l +
, то получим у 2 =у 1 –х 1 .

В результате последнее уравнение преобразуется к виду х 1 - 2у 2: = 13. Здесь коэффициент при х 1 , равен 1, а поэтому при любом целом у 2 = t число х 1 тоже целое.

Остается выразить исходные переменные через t :

вначале выразим х 1 =2t +13, y 1 = 3t +13; а затем x = 8 t +39, y = 19 t + 91.

Итак, получаем бесконечную последовательность (39 + 8 t , 91 + 19 t ) целочисленных решений . Уравнение ax + by = c (1) в приведённых задачах я решал способом рассеивания (измельчения).

IV . Заключение.

Изучая диофантовы уравнения для их решения, я использовал методы перебора вариантов и рассеивания (измельчения). Этими методами я решал, как современные, так и древние задачи. В содержании моей работы были включены задачи, которые сводятся к решению уравнений первой степени с двумя переменными ах+b у=с (1)

В ходе своей работы я сделал выводы:

    Метод перебора требует значительные временные затраты, а значит он не очень удобен и рационален.

    Более рациональным, на мой взгляд, является метод рассеивания. Когда я решал старинную индийскую задачу этим методом, я понял, что существует определённый алгоритм решения. Мне было достаточно полученных в школе знаний. Я убедился, что методы решения дофантовых уравнений с развитием математики постоянно совершенствуются.

На следующий год я хочу продолжить изучение методов решения диофантовых уравнений.

V . Список литературы

    Г. И. Глейзер «История математики в школе» М.: изд. «Просвещение» 1964г. 376с.

    И. Г. Башмакова «Диофант и диофантовы уравнения» М.: изд. «Наука» 1972г. 68с.

    В. А. Никифоровский «В мире уравнений» М.: изд. «Наука» 1987г. 176с.

    А. П. Савин «Энциклопедический словарь юного математика» М.: изд. «Педагогика» 1985г.

    Г. М. Возняк, В. Ф. Гусев «Прикладные задачи на экстремумы» М.: изд. «Просвещение» 1985г. 144с.

    http :// ru . wikipedia . org

VI . Приложение.

    На фермерском хозяйстве нужно провести водопровод длиной 167м. Имеются трубы длиной 5м и 7м. Сколько нужно использовать тех и других труб, чтобы сделать наименьшее количество соединений (трубы не резать)?

Учитывая, что количество как одних, так и других труб может изменяться, количество 7 – метровые трубы обозначаем через х, 5 – метровые – через у

Тогда 7х – длина 7 – метровых труб, 5у – длина 5 – метровых труб.

Отсюда получаем неопределённое уравнение:

7х+5у=167

Выпазив, например, переменную у через переменную х , получим:

Методом перебора легко найти соответствующие пары значений х и у , которые удовлетворяют уравнению 7х+5у=167

(1;32), (6;25), (11;18), (16;11), (21;4).

Из этих решений наиболее выгодное последнее, т. е. х=21; у=4.

Многие старинные способы отгадывания чисел и дат рождения основываются на решении диофантовых уравнений. Так, например, чтобы отгадать дату рождения (месяц и число) собеседника, достаточно узнать у него сумму, получаемую от сложения двух произведений: числа даты (х ) на 12 и номера месяца (у ) на 31.

2. Пусть сумма произведений, о которых идёт речь, равна 330. Найти дату рождения.

Решим неопределённое уравнение

12 х + 31 у = 330.

С помощью метода рассеивания получим:

х = 43 – 31 у 4 ,

у = 6 – 12 у 4 .

Ввиду ограничений, легко констатировать, что единственным решением является

у 4 = 1, х = 12, у = 6.

Итак, дата рождения: 12-е число 6-го месяца, т.е. 12 июня.

Чтобы решить линейное диофантово уравнение, нужно найти значения переменных «x» и «y», которые являются целыми числами. Целочисленное решение сложнее обычного и требует определенного набора действий. Сначала необходимо вычислить наибольший общий делитель (НОД) коэффициентов, а затем найти решение. Если вы нашли одно целочисленное решение линейного уравнения, можно применить простой шаблон, чтобы найти бесконечное множество других решений.

Шаги

Часть 1

Как записать уравнение

    Запишите уравнение в стандартной форме. Линейное уравнение - это уравнение, в котором показатели степени переменных не превышают 1. Чтобы решить такое линейное уравнение, сначала запишите его в стандартной форме. Стандартная форма линейного уравнения выглядит так: A x + B y = C {\displaystyle Ax+By=C} , где A , B {\displaystyle A,B} и C {\displaystyle C} - целые числа.

    Упростите уравнение (если можно). Когда вы запишете уравнение в стандартной форме, посмотрите на коэффициенты A , B {\displaystyle A,B} и C {\displaystyle C} . Если у этих коэффициентов есть НОД, разделите на него все три коэффициента. Решение такого упрощенного уравнения также будет решением исходного уравнения.

    Проверьте, можно ли решить уравнение. В некоторых случаях можно сразу заявить, что уравнение не имеет решений. Если коэффициент «С» не делится на НОД коэффициентов «А» и «В», у уравнения нет решений.

    Часть 2

    Как записать алгоритм Евклида
    1. Уясните алгоритм Евклида. Это ряд повторных делений, в котором предыдущий остаток используется как следующий делитель. Последний делитель, который делит числа нацело, является наибольшим общим делителем (НОД) двух чисел.

      Примените алгоритм Евклида к коэффициентам «A» и «B». Когда вы запишете линейное уравнение в стандартной форме, определите коэффициенты «A» и «B», а затем примените к ним алгоритм Евклида, чтобы найти НОД. Например, дано линейное уравнение 87 x − 64 y = 3 {\displaystyle 87x-64y=3} .

      Найдите наибольший общий делитель (НОД). Поскольку последним делителем было число 1, НОД 87 и 64 равен 1. Таким образом, 87 и 64 являются простыми числами по отношению друг к другу.

      Проанализируйте полученный результат. Когда вы найдете НОД коэффициентов A {\displaystyle A} и B {\displaystyle B} , сравните его с коэффициентом C {\displaystyle C} исходного уравнения. Если C {\displaystyle C} делится на НОД A {\displaystyle A} и B {\displaystyle B} , уравнение имеет целочисленное решение; в противном случае у уравнения нет решений.

    Часть 3

    Как найти решение с помощью алгоритма Евклида

      Пронумеруйте шаги вычисления НОД. Чтобы найти решение линейного уравнения, нужно использовать алгоритм Евклида в качестве основы процесса подстановки и упрощения.

      Обратите внимание на последний шаг, где есть остаток. Перепишите уравнение этого шага так, чтобы изолировать остаток.

      Изолируйте остаток предыдущего шага. Этот процесс представляет собой пошаговое «перемещение вверх». Каждый раз вы будете изолировать остаток в уравнении предыдущего шага.

      Сделайте замену и упростите. Обратите внимание, что уравнение шага 6 содержит число 2, а в уравнении шага 5 число 2 изолировано. Поэтому вместо «2» в уравнении шага 6 подставьте выражение шага 5:

      Повторите процесс подстановки и упрощения. Повторите описанный процесс, перемещаясь по алгоритму Евклида в обратном порядке. Каждый раз вы будете переписывать уравнение предыдущего шага и подставлять его в последнее полученное уравнение.

    1. Продолжите процесс подстановки и упрощения. Этот процесс будет повторяться до тех пор, пока вы не достигнете первоначального шага алгоритма Евклида. Цель процесса - записать уравнение с коэффициентами 87 и 64 исходного уравнения, которое нужно решить. В нашем примере:

      • 1 = 2 (18) − 7 (5) {\displaystyle 1=2(18)-7(5)}
      • 1 = 2 (18) − 7 (23 − 18) {\displaystyle 1=2(18)-7(23-18)} (подставили выражение из шага 3)
      • 1 = 9 (64 − 2 ∗ 23) − 7 (23) {\displaystyle 1=9(64-2*23)-7(23)} (подставили выражение из шага 2)
      • 1 = 9 (64) − 25 (87 − 64) {\displaystyle 1=9(64)-25(87-64)} (подставили выражение из шага 1)

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 28 города СМОЛЕНСКА

СМОЛЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Секция Математика


Реферат

Диофантовы уравнения


Выполнил работу: Гончаров Евгений Игоревич,

учащийся 11 класса

Руководитель: Солдатенкова Зоя Александровна,

учитель математики


Смоленск


Почему меня заинтересовала данная тема?


Как-то раз, листая учебник, я наткнулся на небольшую врезку о диофантовых уравнениях. Я сразу же заметил, что текстовые задачи в рамках этой темы имеют интригующее, порой комичное, условие, а в силу большого количества различных методов их решения, они вовсе не кажутся типовыми. Кроме того, некоторые вызвали у меня затруднение.

Находя пути их рационального решения, я стал плотнее знакомиться с данной темой. Чем глубже я погружался - тем больше сложных и интересных задач встречал, тем больше возникало вопросов. Вскоре я осознал, что большая часть этой темы лежит за рамками школьной программы.

Поэтому я не стал опережать события и углубляться в теорию (КТО, 10 проблема Гильберта, Великая теорема Ферма и прочее). А начал осваивать исключительно алгоритмы решения диофантовых уравнений и систем уравнений, параллельно знакомясь с историей их открытия.



Диофант Александрийский - древнегреческий математик. Летописи не сохранили практическиникаких сведений об этом ученом. Диофант представляет одну занимательных загадок в истории математики. из Мы не знаем, кем он был, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и сам Диофант:

Диофант цитирует Гипсикла Александрийского (древнегреческого математика и астронома, жившего во II веке до н. э.);

О Диофанте пишет Теон Александрийский (греческий математик эпохи позднего эллинизма, философ и астроном, живший в III веке н.э.);

Свои работы Диофант посвящаетДионисию Александрийскому (епископу,жившему в середине III в. н. э.). Таким образом, ученые предполагают, что этот математик жил в IIIв.н.э.

В антологии МаксуимаПлануда (греческого монаха XIV в. н.э.) содержится эпиграмма-задача „Эпитафия Диофанта":


Прах Диофанта гробница покоит; дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

(Пер. С. Н. Боброва).


Эта задача сводится к составлению и решению простейшего линейногоуравнения:


(1/6)х+(1/12)х+(1/7)х+5+(1/2)х+4=х,


где х -количество лет, прожитых Диофантом.

х+7х+12х+42x+9*84=84х;

х=84 - вот сколько лет прожил Диофант.

И за эти годы Диофант написал сочинения Об измерении поверхностей и Об умножении, трактат О многоугольных числах. Основнымже произведением Диофанта является Арифметика в 13 книгах.

К сожалению, далеко не все его работы сохранились. В тех, что дошли до нас, содержится 189 задач с решениями, сводящимися к определенным уравнениям первой и второй степеней и неопределенным. Вклад этого ученого в развитие математики огромен.

Диофант вводит специальные символы для вычитания, сокращенные слова для отдельных определений и действий. То есть именно он был автором первого алгебраического языка.

В честь Диофанта назван кратер на Луне.

Однако Диофант не искал общих решений, а довольствовался каким-нибудь одним, как правило, положительным решением неопределенного уравнения.


Диофантовы уравнения как математическая модель жизненных ситуаций


Каждый человек, даже бесконечно далекий от математики, встречался и, более того, - решал простейшие диофантовы уравнения, сам того не зная. Действительно, они служат математической моделью ко многим задачам, возникающим на бытовом уровне.


Задача № 1


На складе есть ящики с гвоздями, массой по 16, 17 и 40 кг. Сможет ли кладовщик выдать 100 кг гвоздей, не раскрывая ящиков?

Легко заметить, что 17 кг +17кг +16 кг=50 кг. Тогда, что бы выдать 100 кг (в 2 раза больше) необходимо взять 4 ящика по 17 кг и 2 ящика по 16 кг.

Ответ: Да, сможет.

Здесь нам повезло: решение свелось к простейшему перебору, а ответ оказался очевидным. Рассмотрим еще одну задачу:


Задача № 2


В загоне находятся одноглавые сороконожки и трехглавые змеи. Всего у них 298 ног и 26 голов. Сколько ног у трехглавых змей?

Пусть в загоне было х сороконожек, и y Горынычей, причем у каждого змея по p ног. Сразу же оговорим, что каждая из этих переменных должна быть целой и положительной. Тогда:

3y=26x=26-3yx=26-3yx=26-3y

x+py=29840x+py=298120y-742=py p=120-742/y

x>026-3y>0y?8 y?8

y>0 p>0p>0 120-742/y>0>0y>0y>0y>0

p=120-742/yТогда: х=5


Так как p целое, то p=27,25 нам не подходит.

Эта задача была несколько сложнее первой, но путем введения ограничений на переменные мы смогли сузить перебор всего до двух случаев. Идем дальше:


Задача № 3


Требуется разлить 20,5 литра сока в банки по 0,7 литра и 0,9 литра так, чтобы все банки оказались полными. Сколько каких банок надо заготовить? Какое наименьшее количество банок при этом может понадобиться?

Пусть xколичество банок по 0,7 литра, а у - 0,9 литра. Тогда составим уравнение:


Очевидно, что прямой перебор чисел в лоб займет уйму времени. А в мире нет места для некрасивой математики ©Г. Харди.

Рассмотрим метод решения подобных уравнений, а потом вернемся непосредственно к нашей задачи и доделаем ее.


Метод рассеивания


Диофантово уравнение имеет вид:(x1,x2…xn)=0, где P - целочисленная функция, а переменные xi принимают целые значения. Решая задачу № 2, мы столкнулись с уравнением вида ax+by=c, где a,b и с целочисленные коэффициенты, а x и у - переменные, принимающие только целые значения. Это - линейное диофантово уравнение с двумя неизвестными.

Общий метод для решения таких уравнений возник в Индии в XII веке. Его появление было вызвано астрономическими запросами и календарными

расчетами. Первые намеки на общее решение диофантовых уравнений сделал Ариабхатт. Сам же метод был создан Бхаскарой и Брахмагуптой. Сейчас он известен как метод рассеивания. Разберем его на примере:

Пример № 1: Найти все целые решения уравнения 19х-8у=13.

Выразим у через х (так как коэффициент при у наименьший) и выделим целую часть:


у= (19x-13)/8 = (3х-13)/8 +2х


Выражение (3х-13)/8 должно быть целым. Обозначим его k.

Тогда 8k=3x-13. Повторим проделанную выше операцию:


x=(8k+13)/3=2k+(2k+13)/3= (2k+13)/3. Тогда 3h=2k+13,=(3h-13)/2=(h-13)/2+h= (h-13)/2. Тогда 2p= h-13. h=13+2p


Из равенства (4) очевидно, что h принимает целые значения при любых целых значениях p.

Путем последовательных подстановок (4) находим выражения для неизвестных: k=13+3p, x= 39+8p и, наконец, у=91+18p.

Ответ: (39+8p;91+18p).

Теперь, обладая достаточным запасом знаний, вернемся к задачи № 3.


х=29+(2-9у)/7; пусть t=(2-9у)/7, где t - целое число;

t=2-9y; t=(2-2y)/7-y; пусть (2-2y)/7=p, где p - целое число;

Y=7k, где kцелое;y=1-7k, где k - целое число. Тогда x=28+9k.

x>0; 28+9k>0;k?-3.

y>0; 1-7k>0;k?0.


То есть kможет принимать значения: -3,-2,-1,0.


x+y=1-7k+28+9k; x+y=29+2k.


То есть наименьшему количеству банок соответствует наименьшее k.

(x+y)наименьшее=29-6=23.

Ответ: (28+9k;1-7k), где kпринимает значения -3,-2,-1,0. Наименьшее количество банок 23.


Задачи на разложение числа


Стоит заметить, что текстовые задачи, сводящиеся к нахождению числа, знаю его делители и остатки, занимают особое, почетное место, среди текстовых задач по данной теме. Они же и наиболее сложные, а значит интересные. Рассмотрим некоторые из них.

Крестьянка несла на базар корзину яиц. Неосторожный всадник, обгоняя женщину, задел корзину, и все яйца разбились. Желая возместить ущерб, он спросил у крестьянки, сколько яиц было в корзине. Она ответила, что число яиц не знает, но когда она раскладывала их по 2, по 3, по 4, по 5 и по 6, то каждый раз одно яйцо оставалось лишним, а когда она разложила по 7, лишних яиц не осталось. Какое наименьшее количество яиц могла нести крестьянка на базар?

Решение: Обозначим за n искомое количество яиц, тогда составим систему уравнений:

2a+1 n-1=2a (1)=3b+1 n-1=3b (2)=4c+1 n-1=2*2c (3)=5d+1 n-1=5d (4)=6e+1 n-1=2*3e (5)=7fn=7f


Из уравнений (1), (2),(3),(4),(5) следует, что число n-1=2*3*2*5k, где kцелое;


n-1=60k;n=60k+1.


При подстановке полученного n в (7) уравнение получаем: 60k+1=7f.

f= (60k+1)/7 = (4k+1)/7 + 8k;=(4k+1)/7,где rцелое, (1)

7r=4k+1; 4k=7r-1; k=(3r-1)/4+r;=(3r-1)/4,где sцелое

3r-1=4s; 3r=4s+1;r= (s+1)/3+r;= (s+1)/3,где u целое,тогда

s+1=3u; s= 3u-1,


то есть s всегда принимает целые значения при любом целочисленном u. Путем последовательных подстановок получаем:


r=4u-1; k=7u-2; f=420u -119.


Очевидно, что при u=1, f принимает наименьшее положительное значение, а именно 301.

Ответ: 301.

* Следует заметить, что не обязательно слепо следовать этому алгоритму до самого победного конца. Фактически, в рамках условия задачи, нам не обязательно отыскивать все возможные целые значения k: достаточно лишь одного, наименьшего. И уже после (1) преобразования очевидно, что искомое нами k равно 5, а значит f=60*5+1=301.

Предположим, что имеется некоторое количество туристов. Разбив их на тройки, получаем в остатке 2, разбив на пятерки - 3, разбив на семерки - 2. Сколько туристов в группе, если всего их число не превосходит 100 человек.

Пусть всего было k туристов. Тогда:

3a+2 k=3a+2=5b+3 5b+3=3a+2=7c+2 7c+2=3a+2

И тут очевидная часть нашего решения заходит в тупик. Что бы из него выйти необходимо вспомнить, что:

1) a*b+c?c (moda) ? c (modb). Например, 15 ? 1 (mod 7), то есть число 15 дает в остатке 1 при делении 7.

2) a*b+d ? c (modr) óa*b ? c-d (modr) ób ? a(c-d) (modr)óa? b(c-d) (modr). Тогда:

3a+2 k=3a+2 k=3a+2

a+2 ? 3 (mod 5) 3a= 1 (mod 5) a ? 3 (mod 5)

a+2 ? 2 (mod 7) 3a= 0 (mod 7) 3a ? 0 (mod7)

3a+2 k=3a+2= 3 +5p, гдеpцелоеa=3 + 5p

15p ? 0 (mod 7) p= -135 (mod 7)

3a+2 k=3a+2k=105d-2014=3 + 5pa=35d-672 a=35d-672=-135 + 7d, гдеdцелоеp=-135 + 7dp= -135 + 7d


Итак, k=105d-2014. Если d=20, то k = 86, если d<20 , то k<0, если d>20, то k>100. Ответ: 86.

Давайте попробуем придать ей практическую полезность, например, выведем общую формулы для экскурсовода для подсчета туристов. Пусть r1, r2, r3 остатки при делении общего числа туристов на группы по 3, 5,7 соответственно, а общее количество туристов по-прежнему не будет превышать 100 человек. Аналогичнорассуждая, получаем:

3a+r1 3a? (r2-r1) (mod 5)a=3(r2-r1) + 5d, гдеdцелое=5b+r2 3a+r1=7c+r39r2-8r1+15d?r3 (mod 7)=7c+r3k=3a+1 k=3a+1

a=3(r2-r1) + 5d d = 15(r3-9r2+8r1)+7p, где p целое

d?15(r3-9r2+8r1) (mod 7) a = 3(r2-r1) + 5d

k=9r2-8r1+15d k = 225r3-1792r1-2016r2+105p


Ответы: 86; k=225r3-1792r1-2016r2+105p.

Итак, нами получена формула для k. Но в ней помимо r1,r2,r3 присутствует целочисленноеd. Возникает закономерный вопрос: всегда ли числоkбудет определяться единственным образом, если оно меньше 100? Меньше 150? 43? и так далее.


Китайская теорема об остатках


Китайская теорема об остатках (КТО) - несколько связанных утверждений, сформулированных в трактате китайского математика Сунь Цзы (IIIв.н.э.) и обобщенных ЦиньЦзюшао(XVIIIв.н.э.) в его книге «Математические рассуждения в 9 главах». Звучит она так:

Пусть числа M1 , M2, …, Mk - попарно взаимно простые, и M= M1*M2*…*Mk .Тогдасистема


x?B1 (modM1)? B2 (modM2)


имеет единственное решение среди чисел {0,1,…,M-1}.

Проще говоря, ответ будет всегда однозначным, если искомое число туристов меньше произведения делителей, на которые его делят. Возвращаясь к задаче № 4, мы говорим, что их будет возможно сосчитать, если их общее число не будет превышать 104. (М-1=3*5*7-1=104). Так значит, что бы посчитать человек, отталкиваясь от нашей формулы необходимо вычислить 225r3-1792r1-2016r2, а потом отнимать от него число 105 до тех пор, пока мы не получим число меньшее 105, но большее 0. Это долго и неудобно. Да и, честно говоря, число около ста человек можно сосчитать и не используя такие сложные алгоритмы.


Простейшие нелинейные диофантовы уравнения


Диофант полностью проанализировал неопределённые уравнения второй степени с двумя неизвестными. Для решения уравнений и систем более высоких степеней он разработал ещё более тонкие и сложные методы, которые привлекали внимание многих европейских математиков Нового времени. Но практически все уравнения этого типа в рамках школьного курса решаются методом разложения на множители.

Пример № 2: Решить в целых числах уравнениеx2-3xy+2y2=7.


x2-xy-2xy+2y2=7;

x(x-y) -2y(x-y)=7;


Очевидно, что мы можем получить число 7 следующими способами: 1*7=7;7*1=7;-1*(-7)=7;-7*(-1).

Тогда составим и решим систему уравнений:


x-2y=1 x=13y=7y=6y=7 x=-5y=1 y=-6y=-1 x=-13y=-7 y=-6y=-7 x=5y=-1 y=6

Ответ: (13;6), (-5;-6), (-13;-6), (5,6).

Пример № 3:Доказать, что уравнение x5+3x4y- 5x3y2-15x2y3 + 4xy4+12y5=33 не имеет целочисленных корней.


x4(x+3y)-5x2y2 (x+3y)+4y4(x+3y)=33;

(x4- 4x2y2+4y4-x2y2)(x+3y)=33;

(x2(x2-y2)-4y2(x2-y2))(x+3y)=33;

(x-y)(x+y)(x+2y)(x-2y)(x+3y)=33;


Если у=0, тогда исходное уравнение примет вид x5=33. Тогда x не является целым. Значит, при у=0 данное уравнение не имеет целых решений. Если, y?0, то все пять множителей в левой части уравнения различны. С другой стороны число 33 можно представить в виде произведения максимум четырёх различных множителей (33=1·3·11 или 33=-1·3·(-11)·(-1) и т.д.). Следовательно, при y?0данное уравнение также не имеет целых решений.


Десятая проблема Гильберта


Так или иначе, возникает вопрос: любое ли диофантово уравнение можно решить, то есть найти его корни или доказать их отсутствие.

августа 1900 года состоялась II Международный конгресс математиков. На ней Давид Гильберт предложил 23 задачи. Десятая звучала так:

Пусть задано диофантово уравнение с произвольными неизвестными и целыми рациональными числовыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить, разрешимо ли это уравнение в целых рациональных числах.

Множество светлых умов XX-ого века бились над этой задачей:АксельТуэ, ТуральфСкулем, Эмиль Пост, Джулия Робинсон, Мартин Дэвис и Хилари Патнем, Мартина Дэвиса и другие. И лишь в 1970 году Юрий Матиясевич завершилдоказательство алгоритмической неразрешимости этой задачи.

Давид Гильберт (23 января 1862 - 14 февраля 1943) - немецкий математик-универсал, внёс значительный вклад в развитие многих областей математики. В 1910-1920-е годы (после смерти Анри Пуанкаре) был признанным мировым лидером математиков. В 1970 г. Международный астрономический союз присвоил имя Гильберта кратеру на обратной стороне Луны.

Юрий Владимирович Матиясевич (родился 2 марта 1947 года, Ленинград) - советский и российский математик, исследователь Санкт-Петербургского отделения Математического института им. В. А. Стеклова РАН, член экспертной комиссии РСОШ по математике, академик Российской академии наук, доктор физико-математических наук

диофант уравнение математический

Заключение


Эта тема многогранна и практически необъятна. Недаром над ней ломали голову ученые с мировым именем на протяжении все истории развития математики. Она затрагивает фундаментальные понятия в математике и знания о диофантовых уравнениях, как мне кажется, никогда не будут исчерпывающими.

Делая этот реферат я овладел методом рассеивания, научился решать системы уравнений на задачи про остатки, познакомился с историей освоения методов решения диофантовых уравнений.

По миру математики, которая уже давно мудра и величава, мы идём проторенным путём.

Но каждый может стать первооткрывателем: вначале для себя, а в будущем, может, и для других…

Я думаю продолжить работу над этой темой, расширить свои познания в решении неопределённых уравнений. Изучение новых методов решения обогащает багаж знаний любого человека, тем более, что они могут оказаться актуальными на ЕГЭ (С6).


Список используемой литературы


1.Журнал «Квант» 1970г. №7

.«Энциклопедия юного математика» 520 с.

Http://ilib.mirror1.mccme.ru/djvu/serp-int_eq.htm

Пичугин Л.Ф. «За страницами учебника алгебры», М., 1990г., 224с.

Глейзер Г.И. «История математики в школе 10-11», 351с

Петраков И.А. «Математика для любознательных», М., 2000г. 256с.

Http://bars-minsk.narod.ru/teachers/diofant.html


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Министерство образования и науки Республики Казахстан

Восточно-Казахстанская область

Направление: математическое моделирование экономических и социальных процессов.

Секция: математика

Тема: Решение диофантовых уравнений первой и второй степени

Жумадилов Эльдар,

Буркутова Амина,

ГУ «Экономический лицей»

Руководитель:

Дранная Наталия Александровна

ГУ «Экономический лицей»

Консультант:

Заведующий кафедрой математики и методики преподавания математики Семипалатинского государственного педагогического института, кандидат физико- математических наук, доцент

Жолымбаев Оралтай Муратханович

Усть-Каменогорск

Введение……………………………………………………………...….3

Глава 1.О диофантовых уравнениях.......................................................4

Глава 2.Методы решения.........................................................................6

2.1.Алгоритм Евклида......................................................................6

2.2.Цепная дробь...............................................................................8

2.3.Метод разложения на множители.............................................9

2.4.ИСпользование четности...........................................................10

2.5.Другие методы решения диофантовых уравнений.................10

Заключение...............................................................................................12

Список литературы..................................................................................13

Приложение.............................................................................................14

Введение

«Достопочтеннейший Дионисий, зная, что ты ревностно хочешь научиться решению задач, касающихся чисел, я попытался изложить природу их и могуще­ство, начиная с тех оснований, на которых покоится эта наука.

Может быть, этот предмет покажется тебе затруднительным, поскольку ты еще с ним незнаком, а начинающие не склонны надеяться на успех. Но он станет тебе удобопонятным благодаря твоему усердию и моим пояснениям, ибо страстная любовь к науке помогает быстро воспринять учение»

Таким посвящением открывается «Арифметика» Диофанта Александрий­ского.

Диофант представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он.

На могиле Диофанта есть стихотворение-загадка, решая которую нетрудно подсчитать, что Диофант прожил 84 года. О времени жизни Диофанта мы можем судить по работам французского исследователя науки, Поля Таннри, и это, веро­ятно, середина 3 в.н.э.

Наиболее интересным представляется творчество Диофанта. До нас дошло 7 книг из 13, которые были объединены в “Арифметику”.

В этой книге Диофант (3 век) суммировал и расширил накопленный до него опыт решения неопределенных алгебраических уравнений в целых или рацио­нальных числах. С тех пор эти уравнения стали называться диофантовыми.

Вот примеры таких уравнений: х 2 +у 2 =z 2 , х 2 = у 3 +5у + 7.

Интерес к диофантовым уравнениям связан, видимо, с самой природой чело­века – сохранившиеся документы обнаруживают его следы в глубине тысячеле­тий. Еще в Древнем Вавилоне занимались поисками пифагоровых троек – цело­численных решений уравнения

х 2 +у 2 =z 2 .

Диофантовы уравнения позволяют решать алгебраические задачи в целых числах. «Арифметика» Диофанта легла в основу теории чисел нового времени.

Цель данного исследования: найти различные методы решения неопределенных уравнений.

Задачи исследования: научиться решать неопределенные уравнения первой и второй степени с помощью алгоритма Евклида, с помощью цепных дробей или разложением уравнения на множители

Глава 1. О диофантовых уравнениях.

Диофантовыми уравнениями называют алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неиз­вестных в уравнениях должно быть не менее двух (если не ограничиваться только целыми числами). Диофантовы уравнения имеют, как правило, много решений, поэтому их называют неопределенными уравнениями.

К диофантовым уравнениям приводят задачи, по смыслу которых неизвест­ные значения величин могут быть только целыми числами.

Рассмотрим одну задачу: За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200 и 500 р. Какими способами он может распла­титься? Для ответа на этот вопрос достаточно решить уравнение 2х +5у = 17 с двумя неизвестными х и у. Такие уравнения имеют бесконечное множество реше­ний. В частности, полученному уравнению отвечает любая пара чисел вида
. Для нашей практической задачи годятся только целые неотрицатель­ные значения х и у (рвать купюры на части не стоит). Поэтому приходим к поста­новке задачи: найти все целые неотрицательные решения уравнения 2х +5у = 17. Ответ содержит уже не бесконечно много, а всего лишь две пары чисел (1;3) и (6; 1).

Таким образом, особенности диофантовых задач заключаются в том, что: 1) они сводятся к уравнениям или систе­мам уравнений с целыми коэффициентами; 2) решения требуется найти только целые, часто натуральные.

Перед тем как рассмотреть методы решения неопределенных уравнений представим некоторые определения и утверждения, необходимые для дальнейшего изложения.

Делимость

Определение Пусть a,b  Z , b ≠ 0. Числа q  Z и r  {0,1,...,|b|-1} называются соответственно неполным частным и остатком от деления a на b, если выполнено равенство

При этом, если r = 0, то говорят, что a делится на b, или что b является делите­лем a (обозначение a b или b| a).

Диофантовы уравнения можно записать в виде

P(x 1 , x 2 , ..., x n) = 0,

где P(x 1 , ..., x n) - многочлен с целыми коэффициентами.

При исследовании диофантовых уравнений обычно ставятся следующие во­просы:

    имеет ли уравнение целочисленные решения;

    конечно или бесконечно множество его целочисленных решений;

    решить уравнение на множестве целых чисел, т. е. найти все его целочислен­ные решения;

    решить уравнение на множестве целых положительных чисел;

    решить уравнение на множестве рациональных чисел.

Отметим, что проблема решения уравнений в целых числах решена до конца только для уравнений с одним неизвестным, для уравнений первой степени и для уравнений второй степени с двумя неизвестными. Для уравнений выше второй степени с двумя или более неизвестными достаточно трудной является даже за­дача существования целочисленных решений. Например, не известно, имеет ли уравнение

x 3 + y 3 + z 3 = 30

хотя бы одно целочисленное решение. Более того, доказано, что в принципе не существует единого алгоритма, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения.

Глава 2. Методы решения.

2.1 Алгоритм Евклида.

Можно найти наибольший общий делитель натуральных чисел а и b, не раскладывая эти числа на простые множители, а применяя процесс деления с ос­татком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом деле­нии на остаток при втором делении и вести этот процесс до тех пор, пока не произойдет деление без остатка (т.к. остатки убывают, то это на каком-то шаге случится). Последний отличный от нуля остаток и есть искомый НОД (а, b).

Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств: если а>b, то

Здесь r 1 , …, r n – положительные остатки, убывающие с возрастанием но­мера. Из первого равенства следует, что общий делитель чисел а и b делит r 1 и общий делитель b и r 1 делит а, поэтому НОД (а, b) = НОД (b, r 1). Переходя к сле­дующим равенствам системы, получаем:

НОД(а, b) = НОД (b, r 1) = НОД (r 1, r 2) = …

…= НОД (r n -1 , r n) = НОД (r n , 0) = r n .

Таким образом, решая диофантовы уравнения первой степени ax + by = с, можно применять следующие теоремы:

Теорема1.. Если НОД (a, b) = 1, то уравнение ax + by = 1 имеет, по меньшей мере, одну пару (x, y) целого решения.

Теорема 2. Если НОД (a, b) = d > 1, и число с не делится на d, то уравнение ах + by = с не имеет целого решения.

Доказательство. Предположим, что уравнение ах + by = с имеет целое реше­ние (х 0 , y 0). Так как, аd, bd, то получим, что с = (ах + by)d. Это противоречит условиям теоремы и тем самым теорема доказана.

Теорема 3. Если НОД (a, b) = 1,то все целые решения уравнения ах + by = с опре­деляются формулой:

х = х 0 с + bt

Здесь (х 0 , y 0) – целое решение уравнения ах + by = 1, а t – произвольное целое число.

Пример 1. Решить в целых числах уравнение 54х + 37у = 1.

По алгоритму Евклида а = 54, b = 37. Подставляем данные под алгоритм и получаем:

54=371+17, остаток от деления 17 = 54-371

37 = 172+3 , 3 = 37-172

17 = 35+2 , 2 = 17- 35

3 = 21+1 , 1 = 3 - 21

После нахождения единицы выражаем через неё значения а и b:

1 = 3 – (17-35);

1 = 17 - (37- 172) 4;

1 = 17 - 374+178;

1 = 179 – 374;

1 = (54- 371) 9 - 374;

1 = 549 - 379 - 374;

Следовательно, х 0 = 9, у 0 = -13. Значит, данное уравнение имеет следующее решение
.

Пример 2. Требуется найти целое решение уравнения 15x + 37y = 1.

1-й метод. Воспользуемся разложением единицы:

1 = 15*5 + 37*(-2).Ответ: x = 5, y = -2.

2-й метод. Применяя алгоритм Евклида, имеем: 37 = 15*2 + 7, 15 = 2*7 + 1. Отсюда 1 = 15 – 2*7 = 15 – 2(37 – 15*2) = 15*5 + (-2)*37. Тогда x о = 5, y о = - 2. Общее решение уравнения есть система .

Пример 3 . В уравнении 16x + 34y = 7, НОД (16, 34) = 2 и 7 не делится на 2,то нет целых решений.

2.2 Цепная дробь

Одним из применений алгоритма Евклида является представление дроби в виде

Где q 1 – целое число, а q 2 , … ,q n – натуральные числа. Такое выражение на­зывается цепной (конечной непрерывной) дробью.

Уравнение:

с взаимно простыми коэффициентами a и b имеет решение

,
,

где
- предпоследняя подходящая дробь к цепной дроби, в которую раскладывается дробь .

Доказательство:

Если для заданной цепной дроби с последовательными частными q 1 , q 2 ,…,q n несократимые дроби

, , …,

являются результатами свертывания подходящих дробей
,
, и т.д. , порядка 1, 2, …, n соответственно,то

,
, …, n.

При k = n получаем:

,

Где - последняя подходящая дробь к цепной дроби, в которую раскладывается дробь . Так как дроби и несократимы, то , и

.

Умножая обе части последнего равенства на (-1) n , имеем

То есть пара чисел , , где n-порядок цепной дроби, является решением уравнения .

Пример. Для перевозки большого количества контейнеров по 170 кг и по 190 кг выделены трехтонные машины. Можно ли ими загружать машины полно­стью?

Решение:

Пусть х и у количество контейнеров по 170 и 190 кг соответственно, тогда имеем уравнение

170х+190у=3000

После сокращения на 10 уравнение выглядит так,

Для нахождения частного решения воспользуемся разложением дроби в цепную дробь

Свернув предпоследнюю подходящую к ней дробь в обыкновенную

Частное решение данного уравнения имеет вид

х 0 = (-1) 4 300*9=2700, у 0 =(-1) 5 300*8=-2400,

а общее задается формулой

х=2700-19k, y= -2400+17k.

откуда получаем условие на параметр k

Т.е. k=142, x=2, y=14. .

2.3 Метод разложения на множители

Данный метод и все последующие применяются к решению диофантовых уравнений второй степени.

Задача 1.

Решение. Запишем уравнение в виде

(x - 1)(y - 1) = 1.

Произведение двух целых чисел может равняться 1 только в том случае, когда оба они равны 1. Т. е. исходное уравнение равносильно совокупности

с решениями (0,0) и (2,2).

2.4 Использование четности

Задача 2. Решить в простых числах уравнение

x 2 - 2y 2 = 1.

Решение. Рассмотрим два случая в зависимости от четности переменной x.

a) Пусть x - нечетное число. Подстановка x = 2t + 1 приводит исходное уравне­ние к виду

(2t + 1) 2 - 2y 2 = 1,

2y 2 = 4t(t + 1).

Следовательно, 2 | y 2 . Так как y - простое число, то y = 2. Отсюда

b) Пусть x - четное число. Так как x - простое число, то x = 2. Следовательно, т. е. уравнение неразрешимо в простых числах.

Следовательно, уравнение имеет в классе простых чисел единственное реше­ние (3;2).

2.5 Другие методы решения диофантовых уравнений

Задача 3. Доказать, что уравнение

x 2 - 2y 2 = 1

имеет бесконечно много решений в натуральных числах.

Решение. Нетрудно заметить, что (3,2) - одно из решений исходного уравне­ния. С другой стороны из тождества

(x 2 + 2y 2) 2 - 2(2xy) 2 = (x 2 - 2y 2) 2

следует, что если (x, y) - решение данного уравнения, то пара (x 2 + 2y 2 , 2xy) также явля­ется его решением. Используя этот факт, рекуррентно определим бесконеч­ную последовательность (x n , y n) различных решений исходного уравнения:

(x 1 , y 1) = (3,2) и x n +1 = x n 2 + 2y n 2 , y n +1 = 2x n y n , n  N * .

Задача 4. Доказать, что уравнение

x(x + 1) = 4y(y + 1)

неразрешимо в целых положительных числах.

Решение. Нетрудно заметить, что исходное уравнение равносильно уравнению

x 2 + x + 1 = (2y + 1) 2 .

Следовательно, x 2

Задача 5. Решить в целых числах уравнение

x + y = x 2 - xy + y 2 .

Решение. Положим t = x + y. Так как

то должно выполняться неравенство откуда t  .

Заключение:

Современное обозначение непрерывных дробей предложил выдающийся учёный Христиан Гюйгенс (1629-1695).

К цепным дробям Гюйгенс обратился при построении планетария в Париже. Он хотел получить наилучшее приближение для отношения периодов обращения планет. Эти отношения и отношения чисел зубцов соответствующих связанных между собой шестерён планетария должны были совпадать. Но числа зубцов шестерен по техническим причинам не могут быть очень большими. Необходимо было так их подобрать, чтобы полученные отношения как можно меньше отличались от истинных. Гюйгенс обратился к цепным дробям и с их помощью нашел решение стоящей перед ним задачи.

В заключении отметим преимущества и недостатки цепных дробей по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой счисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Данная тема актуальна тем, что диофантовы уравнения используются так же в инженерии, биологии и т.д. Например, при подсчете хромосом первого поколе­ния.

Для начала выберем пять случайных решений: 1=

Хромосома

1-е поколение хромосом и их содержимое.

Главное свойство диофантовых уравнений в том, что мы не перебираем все варианты решений подряд, а приближаемся от случайно выбранных решений к лучшим.

Список литературы

    Журнал «Квант» 1970г. №7

    «Энциклопедия юного математика» 520 с.

    Виленкин Н.Я. «За страницами учебника математики» (10-11 класс).- Москва: «Просвещение» 1996-320 с.

    http:// festival .1 september . ru / articles /417558/

    Шыныбеков Н.А. «Алгебра 8» Алматы «Атамұра» 2004-272 с.

    И.Н.Сергеев «Примени математику» 1989г.- 240 с.

  1. http:// ilib . mirror 1. mccme . ru / djvu / serp - int _ eq . htm

    Кожегельдинов С.Ш. «Некоторые элементы теории диофантовых уравнений в упражнениях и задачах»

    Пичугин Л.Ф. «За страницами учебника алгебры», М., 1990г., 224с.

    Глейзер Г.И. «История математики в школе 10-11», 351с

    Гусев В.А., Орлов А.И. и др. «Внеклассная работа по математике в 6-8 классах», М., 1984г., 286 с.

    Петраков И.А. «Математика для любознательных», М., 2000г. 256с.

    http://bse.sci-lib.com/article028554.html

    http://bars-minsk.narod.ru/teachers/diofant.html

Приложение

    Решить в целых числах уравнение 127x - 52y + 1 = 0. Ответ: x = 9 + 52t, y = 22 + 127t, t  Z .

    Решить в целых числах уравнение 107х + 84у = 1.

    Решить в целых числах уравнение 3x 2 + 4xy - 7y 2 = 13. Указание. Применить разложение на множители.
    Ответ: (2,1), (-2,-1).

    Доказать, что уравнение y 2 = 5x 2 + 6 не имеет целочисленных решений.
    Указание. Рассмотреть уравнение по модулю 4.

    Доказать, что уравнение x 2 - 3y 2 = 1 имеет бесконечно много решений в целых числах.
    Указание. Использовать реккурентное соотношение между решениями.

    Решить уравнение: 17х +13у=5.

    Докажите, что любую денежную сумму, выраженную целым числом рублей, большим 7, можно уплатить без сдачи, имея лишь трёхрублёвые и пятирублёвые купюры в достаточном количестве.

    Требуется разлить 20,5 литра сока в банки по 0,7 литра и 0,9 литра так, чтобы все банки оказались полными. Сколько каких банок надо заготовить? Какое наименьшее количество банок при этом может понадобиться?

    Причем, с тремя неизвестными, а также решают...

  1. Генетические алгоритмы и их практическое применение

    Задача >> Информатика

    Strategies). Ближе ко второму полюсу - системы, которые... идеях адаптации и эволюции. Степень мутации в данном случае... математика Диофанта.26 Рассмотрим диофантово уравнение : a+2b+3c+4d ... Коэффициенты выживаемости первого поколения хромосом (набора решений ) Так...

  2. Выдающаяся роль Леонарда Эйлера в развитии алгебры геометрии и теории чисел

    Дипломная работа >> Исторические личности

    ... решении уравнений . Он указывал, что решение уравнений второй , третьей и четвертой степеней приводится к уравнениям соответственно первой , второй и третьей степени ; эти последние уравнения ... целочисленном решении систем диофантовых уравнений высших степеней и...

  3. Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетонтолуолн-бутанолдиметилформамид

    Дипломная работа >> Химия

    Являются составляющими единой системы диофантовых уравнений и взаимно дополняют... Эффективность принимаемых решений в значительной степени определяется особенностями... молекулу первого компонента, другой – молекулу второго компонента. Согласно уравнению ...