Русский язык

Загрязнение почвы тяжелыми металлами максимально на территории. Загрязнение почвы: с чем связано и чем опасно? Тяжелые металлы, загрязняющие почву

Загрязнение почвы тяжелыми металлами максимально на территории. Загрязнение почвы: с чем связано и чем опасно? Тяжелые металлы, загрязняющие почву

Тяжелые металлы, попадающие в окружающую среду в результате производственной деятельности человека (промышленность, транспорт и т. д.), являются одними из самых опасных загрязнителей биосферы. Такие элементы, как ртуть, свинец, кадмий, медь, относят к «критической группе веществ - индикаторов стресса окружающей среды». Подсчитано, что ежегодно только металлургические предприятия выбрасывают на поверхность Земли более 150 тыс. т меди; 120 - цинка, около 90 - свинца, 12 - никеля и около 30 т ртути. Эти металлы имеют тенденцию закрепляться в отдельных звеньях биологического круговорота, аккумулироваться в биомассе микроорганизмов и растений и по трофическим цепям попадать в организм животных и человека, отрицательно воздействуя на их жизнедеятельность. С другой стороны, тяжелые металлы определенным образом влияют на экологическую обстановку, подавляя развитие и биологическую активность многих организмов.


Актуальность проблемы воздействия тяжелых металлов на почвенные микроорганизмы определяется тем, что именно в почве сосредоточена большая часть всех процессов минерализации органических остатков, обеспечивающих сопряжение биологического и геологического круговорота. Почва является экологическим узлом связей биосферы, в котором наиболее интенсивно протекает взаимодействие живой и неживой материи. На почве замыкаются процессы обмена веществ между земной корой, гидросферой, атмосферой, обитающими на суше организмами, важное место среди которых занимают почвенные микроорганизмы.
Из данных многолетних наблюдений Росгидромета известно, что по суммарному индексу загрязнения почв тяжелыми металлами, рассчитанному для территорий в пределах пятикилометровой зоны, 2,2 % населенных пунктов России относятся к категории «чрезвычайно опасного загрязнения», 10,1 % - «опасного загрязнения», 6,7 % -«умеренно опасного загрязнения». Более 64 млн. граждан РФ проживают на территориях со сверхнормативным загрязнением атмосферного воздуха.
После экономического спада 90-х гг., в последние 10 лет в России вновь наблюдается рост уровня выбросов загрязняющих веществ от промышленности и транспорта. Темпы утилизации промышленных и бытовых отходов в разы отстают от темпов образования в шламохранилищах; на полигонах и свалках накоплено более 82 млрд. т отходов производства и потребления. Средний показатель использования и обезвреживания отходов в промышленности составляет около 43,3 %, твердые бытовые отходы практически в полном объеме подвергаются прямому захоронению.
Площадь нарушенных земель в России составляет в настоящее время более 1 млн. га. Из них на сельское хозяйство приходится 10 %, цветную металлургию - 10, угольную промышленность - 9, нефтедобывающую - 9, газовую - 7, торфяную - 5, черную металлургию - 4 %. При 51 тыс. га восстановленных земель столько же переходит ежегодно в категорию нарушенных.
Крайне неблагополучная ситуация складывается также и с накоплением вредных веществ в почвах городских и промышленных территорий, поскольку в настоящее время в целом по стране учтено более 100 тыс. опасных производств и объектов (из них порядка 3 тыс. химических), что предопределяет весьма высокие уровни рисков техногенного загрязнения и аварийных явлений с масштабными выбросами высокотоксичных материалов.
Пахотные почвы загрязняются такими элементами, как ртуть, мышьяк, свинец, бор, медь, олово, висмут, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями.
Применение минеральных удобрений в сельском хозяйстве направлено на увеличение содержания в почве элементов питания растений, повышение урожайности сельскохозяйственных культур. Однако вместе с действующим веществом основных элементов питания в почву поступает с удобрениями много различных химических веществ, в т. ч. и тяжелых металлов. Последнее обусловлено наличием токсических примесей в исходном сырье, несовершенством технологий производства и применения удобрений. Так, содержание кадмия в минеральных удобрениях зависит от вида сырья, из которого производят удобрения: в апатитах Кольского полуострова насчитывают незначительное его количество (0,4-0,6 мг/кг), в алжирских фосфоритах - до 6, а в марокканских - более 30 мг/кг. Наличие свинца и мышьяка в кольских апатитах соответственно в 5-12 и 4-15 раз ниже, чем в фосфоритах Алжира и Марокко.
А.Ю. Айдиев с соавт. приводит следующие данные по содержанию тяжелых металлов в минеральных удобрениях (мг/кг): азотные - Pb - 2-27; Zn - 1-42; Cu - 1-15; Cd - 0,3-1,3; Ni - 0,9; фосфорные - соответственно 2-27; 23; 10-17; 2,6; 6,5; калийные - соответственно 196; 182; 186; 0,6; 19,3 и Hg - 0,7 мг/кг, т. е. удобрения могут быть источником загрязнения системы почва - растения. Например, с внесением минеральных удобрений под монокультуру озимой пшеницы на черноземе типичном в дозе N45P60K60 в почву ежегодно поступает Pb - 35133 мг/га, Zn - 29496, Cu - 29982, Cd - 1194, Ni - 5563 мг/га. За многолетний период их сумма может достичь существенных величин.
Распределение в ландшафте поступивших в атмосферу из техногенных источников металлов и металлоидов зависит от расстояния от источника загрязнения, от климатических условий (сила и направление ветров), от рельефа местности, от технологических факторов (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).
Загрязнение почв происходит при поступлении в окружающую среду техногенных соединений металлов и металлоидов в любом фазовом состоянии. В целом на планете преобладает аэрозольное загрязнение. При этом наиболее крупные частицы аэрозолей (>2 мкм) выпадают в непосредственной близости от источника загрязнения (в пределах нескольких километров), формируя зону с максимальной концентрацией поллютантов. Загрязнение прослеживается на расстоянии десятков километров. Размер и форма ареала загрязнения определяется влиянием вышеназванных факторов.
Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте. Связываются они алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Часть их удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов и металлоидов. Их образование в почве обусловлено концентрированием этих элементов на поверхности твердых фаз почв за счет реакций сорбции-десорбции, осаждения-растворения, ионного обмена, образования комплексных соединений. Все эти соединения находятся в равновесии с почвенным раствором и совместно представляют систему почвенных подвижных соединений различных химических элементов. Количество поглощенных элементов и прочность их удерживания почвами зависят от свойств элементов и от химических свойств почв. Влияние этих свойств на поведение металлов и металлоидов имеет и общие, и специфические черты. Концентрация поглощенных элементов определяется присутствием тонкодисперсных глинистых минералов и органических веществ. Увеличение кислотности сопровождается повышением растворимости соединений металлов, но ограничением растворимости соединений металлоидов. Влияние несиликатных соединений железа и алюминия на поглощение поллютантов зависит от кислотно-основных условий в почвах.
В условиях промывного режима потенциальная подвижность металлов и металлоидов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.
Соединения тяжелых металлов, входящие в состав тончайших частиц (микронных и субмикронных) аэрозолей, могут поступать в верхние слои атмосферы и переноситься на большие расстояния, измеряемые тысячами километров, т. е. участвовать в глобальном переносе веществ.
По данным метеорологического синтезирующего центра «Восток», загрязнение территории России свинцом и кадмием других стран более чем в 10 раз превышает загрязнения этих стран поллю-тантами от российских источников, что обусловлено доминированием западно-восточного переноса воздушных масс. Выпадение свинца на европейской территории России (ETP) ежегодно составляет: от источников Украины - около 1100 т, Польши и Белоруссии - 180-190, Германии - более 130 т. Выпадения кадмия на ETP от объектов Украины ежегодно превышают 40 т, Польши - почти 9, Белоруссии - 7, Германии - более 5 т.
Возрастающее загрязнение окружающей среды тяжелыми металлами (TM) представляет угрозу для естественных бикомплексов и агроценозов. Аккумулирующиеся в почве TM извлекаются из нее растениями и по трофическим цепям в возрастающих концентрациях поступают в организм животных. Растения аккумулируют TM не только из почвы, но и из воздуха. В зависимости от вида растений и экологической ситуации у них доминирует влияние загрязнения почвы или воздуха. Поэтому концентрация TM в растениях может превышать или находится ниже их содержания в почве. Особенно много свинца из воздуха (до 95 %) поглощают листовые овощи.
На придорожных территориях значительно загрязняет тяжелыми металлами почву автотранспорт, особенно свинцом. При концентрации его в почве 50 мг/кг примерно десятую часть этого количества накапливают травянистые растения. Также растения активно поглощают цинк, количество которого в них может в несколько раз превосходить его содержание в почве.
Тяжелые металлы существенным образом влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект и могут выступать как мутагенный фактор.
Большинство тяжелых металлов в повышенных концентрациях ингибируют активность ферментов в почвах: амилазы, дегидрогеназы, уреазы, инвертазы, каталазы. На основании этого предложены индексы, аналогичные широко известному показателю ЛД50, в которых действующей считается концентрация загрязнителя, на 50 или 25 % снижающая определенную физиологическую активность, например уменьшение выделения СО2 почвой - ЭкД50, ингибирование активности дегидрогеназы - ЕС50, подавление активности инвертазы на 25 %, снижение активности восстановления трехвалентного железа - ЕС50.
С.В. Левиным с соавт. в качестве индикаторных признаков различных уровней загрязнения почвы тяжелыми металлами в реальных условиях предложено следующее. Низкий уровень загрязнения следует устанавливать по превышению фоновых концентраций тяжелых металлов с помощью принятых методов химического анализа. О среднем уровне загрязнения наиболее четко свидетельствует отсутствие перераспределения членов инициированного микробного сообщества почвы при дополнительном внесении в нее дозы загрязнителя, равной удвоенной концентрации, соответствующей величине зоны гомеостаза незагрязненной почвы. В качестве дополнительных индикаторных признаков тут уместно использовать снижение активности азотфиксации в почве и вариабельности этого процесса, сокращение видового богатства и разнообразия комплекса почвенных микроорганизмов и увеличение в нем доли токсинообразующих форм, эпифитных и пигментированных микроорганизмов. Для индикации высокого уровня загрязнения наиболее целесообразно учитывать реакцию на загрязнение высших растений. Дополнительными признаками могут быть обнаружение в почве в высокой популяционной плотности резистентных к определенному загрязнителю форм микроорганизмов на фоне общего снижения микробиологической активности почв.
В целом по России средняя концентрация всех определяемых TM в почвах не превышает 0,5 ПДК (ОДК). Однако коэффициент вариации по отдельным элементам находится в пределах 69-93 %, а по кадмию превышает 100 %. Среднее содержание свинца в песчаных и супесчаных почвах составляет 6,75 мг/кг. Количество меди, цинка, кадмия находится в пределах 0,5-1,0 ОДК. Ежегодно каждый квадратный метр поверхности почвы поглощает около 6 кг химических веществ (свинца, кадмия, мышьяка, меди, цинка и др.). По степени опасности TM подразделяются на три класса, из которых первый относится к высокоопасным веществам. В него входят Pb, Zn, Cu, As, Se, F, Hg. Второй умеренно опасный класс представляют В, Co, Ni, Mo, Cu, Cr, а третий (малоопасный) - Ba, V, W, Mn, Sr. Сведения об опасных концентрациях TM дает анализ их подвижных форм (табл. 4.11).

Для рекультивации почв, загрязненных тяжелыми металлами, используют разные способы, одним из которых является применение природных цеолитов или сорбентмелиорантов с его участием. Цеолиты обладают высокой селективностью по отношению ко многим тяжелым металлам. Выявлена эффективность этих минералов и цеолитсодержащих пород для связывания тяжелых металлов в почвах и снижения их поступления в растения. Как правило, почвы содержат цеолиты в незначительном количестве, однако в многих странах мира месторождения природных цеолитов широко распространены, и использование их для детоксикации почв может быть экономически не затратным и экологически эффективным, вследствие улучшения агрохимических свойств почв.
Использование 35 и 50 г/кг почвы гейландита Пегасского месторождения (фракция 0,3 мм) на загрязненных черноземах вблизи цинкоплавильного завода под овощные культуры уменьшало содержание подвижных форм цинка и свинца, но при этом ухудшалось азотное и частично фосфорно-калийное питание растений, что снижало их продуктивность.
По данным В.С. Белоусова, внесение в загрязненную тяжелыми металлами почву (10-100-кратное превышение фона) 10-20 т/га цеолитсодержащих пород Хадыженского месторождения (Краснодарский край), содержащих 27-35 % цеолитов (стальбит, гейландит), способствовало снижению накопления TM в растениях: меди и цинка до 5-14 раз, свинца и кадмия - до 2-4 раз. Им также выявлено, что отсутствие явной корреляционной взаимосвязи между адсорбционными свойствами ЦСП и эффектом инактивации металла, выражающееся, например, в относительно меньших показателях снижения содержания свинца в тест-культурах, несмотря на его очень высокое поглощение ЦСП в адсорбционных опытах, вполне ожидаемо и является следствием видовых различий растений в способности накапливать тяжелые металлы.
В вегетационных опытах на дерново-подзолистых почвах (Московская обл.), искусственно загрязненных свинцом в количестве 640 мг Pb/кг, что соответствует 10-кратному ПДК для кислых почв, применение цеолита Сокирницкого месторождения и модифицированного цеолита «клино-фос», содержащего в качестве активных компонентов ионы аммония, калия, магния и фосфора в дозах 0,5 % от массы почвы, оказало разное влияние на агрохимическую характеристику почв, рост и развитие растений. Модифицированный цеолит снижал кислотность почвы, значительно увеличивал содержание доступного растениям азота и фосфора, усиливал активность аммонификации и интенсивность микробиологических процессов, обеспечивал нормальную вегетацию растений салата, тогда как внесение ненасыщенного цеолита не было эффективным.
Ненасыщенный цеолит и модифицированный цеолит «клинофос» после 30 и 90 суток компостирования почвы также не проявили своих сорбционных свойств по отношению к свинцу. Возможно, 90 суток недостаточно для прохождения процесса сорбции свинца цеолитами, о чем свидетельствуют данные В.Г. Минеева с соавт. о проявлении сорбционного эффекта цеолитов только на второй год после их внесения.
При внесении в каштановые почвы семипалатинского Прииртышья измельченного до высокой степени дисперсности цеолита относительное содержание в ней активной минеральной фракции с высокими ионообменными свойствами возрастало, вследствие чего увеличивалась общая емкость поглощения пахотного слоя. Отмечена зависимость между внесенной дозой цеолитов и количеством адсорбированного свинца - максимальная доза приводила к наибольшему поглощению свинца. Влияние цеолитов на процесс адсорбции существенно зависело от его помола. Так, адсорбция ионов свинца при внесении цеолитов помола 2 мм в супесчаной почве возрастала в среднем на 3,0; 6,0 и 8,0 %; в среднесуглинистой -на 5,0; 8,0 и 11,0 %; в солонцеватой среднесуглинистой - на 2,0; 4,0 и 8,0 % соответственно. При использовании цеолитов помола 0,2 мм увеличение количества поглощенного свинца составляло: в супесчаной почве в среднем 17, 19 и 21 %, в среднесуглинистой - 21, 23 и 26 %, в солонцеватой и среднесуглинистой - 21, 23 и 25 % соответственно.
А.М. Абдуажитовой на каштановых почвах семипалатинского Прииртышья также получены положительные результаты влияния природных цеолитов на экологическую устойчивость почв и их поглотительную способность по отношению к свинцу, снижению его фитотоксичности.
По данным М.С. Панина и Т.И. Гулькиной, при изучении влияния различных агрохимикатов на сорбцию ионов меди почвами этого региона установлено, что внесение органических удобрений и цеолитов способствовало повышению сорбционной способности почв.
В карбонатной легкосуглинистой почве, загрязненной Pb - продуктом сгорания этилированного автомобильного топлива, 47 % этого элемента обнаружено во фракции песка. При попадании солей Pb(II) в незагрязненную глинистую почву и песчанистый тяжелый суглинок в этой фракции оказывается только 5-12 % Pb. Внесение цеолита (клиноптилолита) снижает содержание Pb в жидкой фазе почв, что должно приводить к уменьшению его доступности для растений. Однако цеолит не позволяет перевести металл из пылевой и глинистой фракции в песчаную, чтобы предотвратить его ветровой вынос в атмосферу с пылью.
Природные цеолиты используются в экологически безопасных технологиях мелиорации солонцовых почв, уменьшая содержание водорастворимого стронция в почве на 15-75 % при внесении их с фосфогипсом, а также снижают концентрации тяжелых металлов. При выращивании ячменя, кукурузы и внесении смеси фосфогипса и клиноптиолита негативные явления, вызванные фосфогипсом, устранялись, что положительно влияло на рост, развитие и урожайность культур.
В вегетационном опыте на загрязненных почвах с тест-растением ячменем изучали влияние цеолитов на фосфатную буферность на фоне внесения в почву 5, 10 и 20 мг Р/100 г почвы. На контроле отмечена высокая интенсивность поглощения P и низкая фосфатная буферность (РВС{р}) при малой дозе P-удобрения. NH-и Са-цеолиты снижали PBC {р}, а интенсивность Н2РО4 не изменялась до конца вегетации растений. Влияние мелиорантов усиливалось с повышением содержания P в почве, в результате чего величина потенциала PBC{р} возросла двукратно, что позитивно отражалось на плодородии почвы. Цеолитные мелиоранты гармонизируют удобрение растений минеральным Р, при этом активируются их природные барьеры в т. н. Zn-акклиматизации; в итоге аккумуляция токсикантов в тест-растениях снижалась.
Возделывание плодовых и ягодных культур предусматривает регулярные обработки защитными препаратами, содержащими тяжелые металлы. Учитывая, что эти культуры произрастают на одном месте в течение длительного времени (десятки лет) в почвах садов, как правило, накапливаются тяжелые металлы, отрицательно влияющие на качество ягодной продукции. Многолетними исследованиями установлено, что, например, в серой лесной почве под ягодниками валовое содержание TM превысило регионально-фоновую концентрацию в 2 раза для Pb и Ni, в 3 раза для Zn, в 6 раз для Cu.
Применение цеолитсодержащих пород Хотынецкого месторождения для снижения загрязнения ягод черной смородины, малины и крыжовника является экологически и экономически эффективным мероприятием.
В работе Л.И. Леонтьевой выявлена следующая особенность, которая, на наш взгляд, очень значима. Автором установлено, что максимальное снижение содержания подвижных форм P и Ni в серой лесной почве обеспечивается внесением цеолитсодержащей породы в дозе 8 и 16 т/га, а Zn и Cu - 24 т/га, т. е. наблюдается дифференцированное отношение элемента к количеству сорбента.
Создание удобрительных композиций и грунтов из отходов производства требует особого контроля, в частности нормирования содержания тяжелых металлов. Поэтому применение цеолитов здесь считается эффективным приемом. Например, при изучении особенностей роста и развития астры на почвогрунтах, созданных на основе гумусового слоя чернозема оподзоленного по схеме: контроль, почвогрунт+100 г/м шлака; почвогрунт+100 г/м2 шлака+100 г/м2 цеолита; почвогрунт+100 г/м2 цеолита; почвогрунт+ 200 г/м2 цеолита; почвогрунт+осадок сточных вод 100 г/м"+цеолит 200 г/м2; почвогрунт+осадок 100 г/м2, установлено, что лучшим для роста астр был почвогрунт с осадком сточных вод и цеолитом.
Оценивая последействие создания грунтов из цеолитов, осадка сточных вод и шлаковых отсевов, определяли их влияние на концентрацию свинца, кадмия, хрома, цинка и меди. Если в контроле количество подвижного свинца составило 13,7 % от валового содержания в почве, то при внесении шлака оно возросло до 15,1 %. Применение органических веществ осадка сточных вод снизило содержание подвижного свинца до 12,2 %. Наибольший эффект закрепления свинца в малоподвижные формы оказывал цеолит, снижая концентрацию подвижных форм Pb до 8,3 %. При совместном действии осадка сточных вод и цеолита при применении шлаков количество подвижного свинца уменьшалось на 4,2 %. На закрепление кадмия положительное действие оказывал как цеолит, так и осадок сточных вод. В снижении подвижности меди и цинка в почвогрунтах в большей степени проявил себя цеолит и его сочетание с органическими веществами осадка сточных вод. Органическое вещество осадка сточных вод способствовало повышению подвижности никеля и марганца.
Внесение осадков сточных вод Люберецкой станции аэрации в супесчаные дерново-подзолистые почвы привело к их загрязнению TM. Коэффициенты накопления TM в загрязненных OCB почвах по подвижным соединениям были выше в 3-10 раз, чем по валовому содержанию, по сравнению с почвами незагрязненными, что свидетельствовало о высокой активности внесенных с осадками TM и доступности их для растений. Максимальное снижение подвижности TM (на 20-25 % от исходного уровня) было отмечено при внесении торфонавозной смеси, что обусловлено образованием прочных комплексов TM с органическим веществом. Железная руда, наименее эффективная как мелиорант, вызывала уменьшение содержания подвижных соединений металлов на 5-10 %. Цеолит по действию в качестве мелиоранта занимал промежуточное положение. Использованные в опытах мелиоранты снижали подвижность Cd, Zn, Cu и Cr в среднем на 10-20 %. Таким образом, применение мелиорантов было эффективно при содержании TM в почвах, близком к ПДК или превышающем допустимые концентрации не более чем на 10-20 %. Внесение мелиорантов в загрязненные почвы снижало поступление их в растения на 15-20 %.
Аллювиальные дерновые почвы Западного Забайкалья по степени обеспеченности подвижными формами микроэлементов, определенных в аммонийно-ацетатной вытяжке, относятся к высокообеспеченным по марганцу, среднеобеспеченным - по цинку и меди, очень высокообеспеченным - по кобальту. Они не нуждаются в применении микроудобрений, поэтому внесение осадков сточных вод может привести к загрязнению почвы токсичными элементами и требует эколого-геохимической оценки.
Л.Л. Убугуновым с соавт. было изучено влияние осадка сточных вод (ОСВ), морденитсодержащих туфов Myxop-Tалинского месторождения (MT) и минеральных удобрений на содержание подвижных форм тяжелых металлов в аллювиальных дерновых почвах. Исследования проводились по следующей схеме: 1) контроль; 2) N60P60K60 - фон; 3) OCB - 15 т/га; 4) MT - 15 т/га; 5) фон+ОСВ - 15 т/га; 6) фон+МТ 15 т/га; 7) OCB 7,5 т/га+МТ 7,5 т/га; 8) OCB Ют/га+МТ 5 т/га; 9) фон+ОСВ 7,5 т/га; 10) фон+ОСВ 10 т/га+МТ 5 т/га. Минеральные удобрения вносили ежегодно, ОСВ, MT и их смеси - один раз в 3 года.
Для оценки интенсивности накопления TM в почве использованы геохимические показатели: коэффициент концентрации - Kc и суммарный показатель загрязнения - Zc, определяемые по формулам:

где С - концентрация элемента в опытном варианте, Сf - концентрация элемента на контроле;

Zc = ΣKc - (n-1),


где n - число элементов с Kc ≥ 1,0.
Полученные результаты выявили неоднозначное влияние минеральных удобрений, ОСВ, морденитсодержащих туфов и их смесей на содержание подвижных микроэлементов в слое почвы 0-20 см, хотя следует отметить, что во всех вариантах опыта их количество не превысило уровня ПДК (табл. 4.12).
Применение практически всех видов удобрений, за исключением MT и MT+NPK, привело к увеличению содержания марганца. При внесении в почву OCB совместно с минеральными удобрениями Kc достигал максимальной величины (1,24). Более существенно происходило накопление цинка в почве: Kc при внесении OCB достигал значений 1,85-2,27; минеральных удобрений и смесей ОСВ+МТ -1,13-1,27; с использованием же цеолитов он уменьшался до минимального значения - 1,00-1,07. Накопления меди и кадмия в почве не происходило, их содержание во всех вариантах опыта в целом было на уровне или чуть ниже контрольного. Отмечено лишь незначительное повышение содержания Cu (Kc - 1,05-1,11) в варианте с применением OCB как в чистом виде (вар. 3), так и на фоне NPK (вар. 5) и Cd (Kc - 1,13) при внесении в почву минеральных удобрений (вар. 2) и OCB на их фоне (вар. 5). Содержание кобальта несколько повышалось при использовании всех видов удобрений (максимально - вар. 2, Kc -1,30), за исключением вариантов с применением цеолитов. Максимальная концентрация никеля (Kc - 1,13-1,22) и свинца (Kc - 1,33) отмечена при внесении в почву OCB и OCB на фоне NPK (вар. 3, 5), использование же OCB совместно с цеолитами (вар. 7, 8) снижало данный показатель (Kc - 1,04 - 1,08).

По величине показателя суммарного загрязнения тяжелыми металлами слоя почвы 0-20 см (табл. 4.12) виды удобрений расположились в следующий ранжированный ряд (в скобках - значение Zc): OCB+NPK (3,52) → ОСВ (2,68) - NPK (1,84) → 10СВ+МТ+NPК (1,66-1,64) → OСВ+МТ, вар. 8 (1,52) → OСВ+МТ вар. 7 (1,40) → MT+NPK (1,12). Уровень суммарного загрязнения почв тяжелыми металлами при внесении в почву удобрений был в целом незначительным, по сравнению с контролем (Zc<10), тем не менее тенденция накопления TM при использовании осадков сточных вод четко обозначилась, как и эффективное действие морденитсодержащих туфов в снижении содержания подвижных форм тяжелых металлов в почве, а также в повышении качества клубней картофеля.
Л.В. Кирийчевой и И.В. Глазуновой были сформулированы следующие основные требования к компонентному составу создаваемых сорбентмелиорантов: высокая емкость поглощения композиции, одновременное присутствие органической и минеральной составляющих в композиции, физиологическая нейтральность (pH 6,0-7,5), способность композиции адсорбировать подвижные формы TM, переводя их в неподвижные формы, повышенная гидроаккумулирующая способность композиции, наличие в ней структурообразователя, свойство лиофильности и коагулянта, высокая удельная поверхность, доступность исходного сырья и низкая его стоимость, использование (утилизация) сырьевых отходов в составе сорбента, технологичность изготовления сорбента, безвредность и экологическая нейтральность.
Из 20 композиций сорбентов природного происхождения авторами выявлена наиболее эффективная, содержащая 65 % сапропеля, 25 % цеолита и 10 % глинозема. Этот сорбент-мелиорант был запатентован и получил название «Сорбекс» (патент РФ № 2049107 «Состав для мелиорации почв»).
Механизм действия сорбентмелиоранта при внесении его в почву весьма сложен и включает в себя процессы различной физико-химической природы: хемосорбцию (поглощение с образованием труднорастворимых соединений TM); механическую абсорбцию (объемное поглощение крупных молекул) и ионно-обменные процессы (замещение в почвенно-поглощающем комплексе (ППК) ионов TM на нетоксичные ионы). Высокая поглотительная способность «Сорбекса» обусловлена регламентируемой величиной емкости катионного обмена, тонкодисперсностью строения (большая удельная поверхность, до 160 м2), а также стабилизирующим действием на показатель pH в зависимости от характера загрязнения и реакции среды с целью предотвращения десорбции наиболее опасных поллютантов.
При наличии почвенной влаги в сорбенте идет частичная диссоциация и гидролиз сульфата алюминия и гуминовых веществ, входящих в состав органического вещества сапропеля. Электролитическая диссоциация: A12(SО4)3⇔2A13++3SО4в2-; А13++Н2O = АlОН2+ = OН; (R* -СОО)2 Ca ⇔ R - COO-+R - СООСа+ (R - алифатический радикал гуминовых веществ); R - COO+H2O ⇔ R - СООН+ОН0. Полученные в результате гидролиза катионы являются сорбентами анионных форм поллютантов, например мышьяка (V), образуя нерастворимые соли или устойчивые органо-минеральные соединения: Al3+ - AsO4в3- = AlAsO4; 3R-CООCa++AsO4в3- = (R-CООCa)3 AsO4.
Более распространенные катионные формы, характерные для TM, образуют прочные хелатные комплексы с полифенольными группами гуминовых веществ или сорбируются анионами, образованными при диссоциации карбоксилов, фенольных гидроксилов - функциональных групп гуминовых веществ сапропеля в соответствии с представленными реакциями: 2R - COO + Pb2+ = (R - СОО)2 Pb; 2Аr - O+ Сu2+ =(Аr - O)2Сu (Ar ароматический радикал гуминовых веществ). Поскольку органическое вещество сапропеля нерастворимо в воде, то TM переходят в неподвижные формы в виде прочных органоминеральных комплексов. Сульфат-анионы осаждают катионы, в основном, бария или свинца: 2Pb2+ + 3SO4в2- = Pb3(SO4)2.
На анионном комплексе гуминовых веществ сапропеля сорбируются все двух- и трехвалентные катионы TM, а сульфат-нон иммобилизует ионы свинца и бария. При поливалентном загрязнении TM идет конкуренция между катионами и преимущественно сорбируются катионы с более высоким электродным потенциалом, согласно электрохимическому ряду напряжений металлов, поэтому сорбции катионов кадмия будет препятствовать наличие в растворе ионов никеля, меди, свинца и кобальта.
Механическая поглотительная способность «Сорбекса» обеспечивается тонкодисперсностью и значительной удельной поверхностью. Загрязняющие вещества, имеющие крупные молекулы, такие как пестициды, отходы нефтепродуктов и т. п., механически задерживаются в сорбционных ловушках.
Наилучший результат был достигнут при внесении сорбента в почву, что позволило снизить потребление TM растениями овса из почвы: Ni - в 7,5 раза; Cu - в 1,5; Zn - в 1,9; P - в 2,4; Fe - в 4,4; Mn -в 5 раз.
Для оценки влияния «Сорбекса» на поступление TM в растительную продукцию в зависимости от суммарного загрязнения почвы А.В. Ильинским были проведены вегетационные и полевые опыты. В вегетационном опыте изучали влияние «Сорбекса» на содержание в фитомассе овса при разных уровнях загрязнения оподзоленного чернозема Zn, Cu, Pb и Cd по схеме (табл. 4.13).

Почву загрязняли путем добавления химически чистых водорастворимых солей и тщательно перемешивали, затем подвергали экспозиции в течение 7 суток. Расчет доз внесения солей TM осуществлялся с учетом фоновых концентраций. В опыте использовали вегетационные сосуды площадью 364 см2 с массой почвы в каждом сосуде 7 кг.
Почва имела следующие агрохимические показатели рНKCl = 5,1, гумус - 5,7 % (по Тюрину), фосфор - 23,5 мг/100 г и калия 19,2 мг/100 г (по Кирсанову). Фоновое содержание подвижных (1М HNO3) форм Zn, Cu, Pb, Cd - 4,37; 3,34; 3,0; 0,15 мг/кг соответственно. Продолжительность эксперимента 2,5 месяца.
Для поддержания оптимальной влажности 0,8НВ периодически проводили поливы чистой водой.
Урожайность фитомассы овса (рис. 4.10) в вариантах без внесения «Сорбэкса» при чрезвычайно опасном загрязнении снижается более чем в 2 раза. Применение «Сорбекса» из расчета 3,3 кг/м способствовало повышению фитомассы, по сравнению с контролем, в 2 и более раз (рис 4.10), а также значительному снижению потребления Cu, Zn, Pb растениями. Вместе с тем произошло незначительное увеличение содержания Cd в фитомассе овса (табл. 4.14), что соответствует теоретическим предпосылкам о механизме сорбции.

Таким образом, внесение сорбент-мелиорантов в загрязненную почву позволяет не только снизить поступление тяжелых металлов в растения, улучшить агрохимические свойства деградированных черноземов, но и повысить продуктивность сельскохозяйственных культур.

За почти 30-летний период исследований состояния экосистем, загрязненных тяжелыми металлами, получено множество свидетельств интенсивности локального загрязнения металлами почв.

Зона сильного загрязнения сформировалась в пределах 3-5 км от Череповецкого комбината черной металлургии (Вологодская обл.). В окрестностях Среднеуральского металлургического комбината загрязнение аэрозольными выпадениями охватило территорию площадью более 100 тыс. га, причем 2-2,5 тыс. га полностью лишены растительного покрова. В ландшафтах, подверженных воздействию выбросов Чемкентского свинцового комбината, наибольший эффект наблюдается в промзоне, где концентрация свинца в почве на 2-3 порядка выше фоновой.

Отмечается загрязнение не только Pb, но и Mn, поступление которого носит вторичный характер и может быть вызвано переносом из деградированной почвы. Деградация почв наблюдается в загрязненных почвах окрестностей завода «Электроцинк» в предгорьях Северного Кавказа. Сильное загрязнение проявляется в 3-5-километровой зоне от завода. Аэрозольные выбросы свинцовоцинкового комбината Усть-Каменогорска (Северный Казахстан) обогащены металлами: до недавнего времени ежегодные выбросы РЬ составляли 730 т свинца, Zn 370 т цинка, 73 000 т серной кислоты и серного ангидрида. Выбросы аэрозолей и сточных вод привели к созданию зоны сильного загрязнения с превышением основных групп поллютантов, на порядки превышающие фоновые уровни содержания металлов. Загрязнение почв металлами часто сопровождается закислением почв.

Когда почвы подвержены аэрозольному загрязнению, важнейшим фактором, влияющим на состояние почв, является удаленность от источника загрязнения. Например, максимальное загрязнение растений и почв свинцом, поступающим с выхлопными газами автомобилей, прослеживается чаще всего в 100-200-метровой зоне от магистрали.

Влияние аэрозольных выбросов промышленных предприятий, обогащенных металлами, проявляется чаще всего в радиусе 15-20 км, реже - в 30 км от источника загрязнения.

Имеют значение такие технологические факторы, как высота выброса аэрозолей из труб заводов. Зона максимального загрязнения почв образуется в пределах расстояния, равного 10-40-кратной высоте промышленного выброса высокого и горячего и 5-20-кратной высоте низкого холодного выброса.

Существенное влияние оказывают метеорологические условия. В соответствии с направлением преобладающих ветров формируется ареал преобладающей части загрязненных почв. Чем больше скорость ветра, тем меньше загрязняются почвы ближних окрестностей предприятия, тем интенсивнее перенос загрязняющих веществ. Наибольшие концентрации загрязняющих веществ в атмосфере ожидаются для низких холодных выбросов при скорости ветра 1-2 м/с, для высоких горячих выбросов - при скорости ветра 4-7 м/с. Влияют температурные инверсии: в инверсионных условиях ослабляется турбулентный обмен, что ухудшает рассеивание аэрозолей выбросов и ведет к загрязнению в импактной зоне. Сказывается влажность воздуха: при высокой влажности уменьшается рассеяние загрязняющих веществ, так как при конденсации они могут из газообразной формы переходить в менее миграционно-способную жидкую фазу аэрозолей, далее они удаляются из атмосферы в процессе осаждения. Следует учитывать, что время пребывания во взвешенном состоянии загрязняющих частиц аэрозоля и соответственно дальность и скорость их переноса зависят и от физико-химических свойств аэрозолей: частицы более крупные оседают быстрее, чем тонкодисперсные.

В зоне воздействия выбросов промышленных предприятий, прежде всего предприятий цветной металлургии, являющихся самым мощным поставщиком тяжелых металлов, меняется состояние ландшафта в целом. Например, ближайшие окрестности свинцовоцинкового завода в Приморье превратились в техногенную пустыню. Они полностью лишены растительности, почвенный покров уничтожен, поверхность склонов сильно эродирована. На расстоянии более 250 м сохранился изреженный лес из дуба монгольского без примеси других пород, травянистый покров полностью отсутствует. В верхних горизонтах распространенных здесь бурых лесных почв содержание металлов превысило фоновые уровни и кларк в десятки и сотни раз.

Судя по содержанию металлов в составе вытяжки 1н. HNO 3 из этих загрязненных почв, основная часть металлов в них находится в подвижном, непрочно связанном состоянии. Это общая закономерность для загрязненных почв. В данном случае это привело к повышению миграционной способности металлов и увеличению на порядки концентрации металлов в лизиметрических водах. Выбросы данного предприятия цветной металлургии наряду с обогащением металлами имели повышенное содержание оксидов серы, что способствовало подкислению осадков и подкислению почв, pH их снизился на единицу.

В почвах, загрязненных фторидами, напротив, уровень pH почв повышался, что способствовало увеличению подвижности органического вещества: окисляемость водных вытяжек из почв, загрязненных фторидами, повысилась в несколько раз.

Поступившие в почву металлы распределяются между твердыми и жидкой фазами почвы. Органические и минеральные компоненты твердых фаз почвы удерживают металлы за счет разных механизмов с различной прочностью. Эти обстоятельства имеют важное экологическое значение. От того, как много будет поглощено почвами металлов и как прочно они будут удержаны, зависит способность загрязненных почв влиять на состав и свойства вод, растений, воздуха, способность тяжелых металлов к миграции. От этих же факторов зависит буферная способность почв по отношению к загрязняющим веществам, способность их выполнять в ландшафте барьерные функции.

Количественные показатели поглотительной способности почв в отношении различных химических веществ определяют чаще всего в модельных экспериментах, приводя изучаемые почвы во взаимодействие с различными дозами контролируемых веществ. Возможны разные варианты постановки этих экспериментов в полевых или лабораторных условиях.

Лабораторные опыты проводят в статических или динамических условиях, приводя исследуемую почву во взаимодействие с растворами, содержащими переменные концентрации металлов. По результатам опыта строят изотермы сорбции металлов стандартным методом, анализируя закономерности поглощения с использованием уравнений Ленгмюра или Фрейндиха.

Накопленный опыт исследования поглощения ионов различных металлов почвами с различными свойствами свидетельствует о наличии ряда общих закономерностей. Количество поглощенных почвой металлов и прочность их удерживания являются функцией концентрации металлов в растворах, взаимодействующих с почвой, а также свойств почвы и свойств металла, влияют также и условия постановки эксперимента. При малых нагрузках почва способна поглотить загрязняющие вещества полностью вследствие процессов ионного обмена, специфической сорбции. Эта способность проявляется тем сильнее, чем большей дисперсностью характеризуется почва, чем выше в ней содержание органических веществ. Не меньшее значение имеет реакция почв: повышение pH способствует увеличению поглощения почвами тяжелых металлов.

Повышение нагрузки ведет к снижению поглощения. Внесенный металл поглощается почвой не полностью, но между концентрацией металла в растворе, взаимодействующим с почвой, и количеством поглощенного металла имеет место прямолинейная зависимость. Последующее повышение нагрузки ведет к дальнейшему уменьшению количества поглощенного почвой металла вследствие ограниченного количества позиций в обменно-сорбционном комплексе, способных к обменному и безобменному поглощению ионов металлов. Ранее наблюдавшаяся прямолинейная зависимость между концентрацией металлов в растворе и их количеством, поглощенным твердыми фазами, нарушается. На следующем этапе возможности твердых фаз почвы поглощать новые дозы ионов металлов почти полностью исчерпываются, увеличение концентрации металла во взаимодействующем с почвой растворе практически перестает влиять на поглощение металла. Способность почв поглощать ионы тяжелых металлов в широком интервале их концентраций во взаимодействующем с почвой растворе свидетельствует о полифункциональности столь гетерогенного природного тела, каким является почва, о разнообразии механизмов, обеспечивающих ее способность удерживая металлы, защищать от загрязнения сопредельные с почвой среды. Но очевидно, что эта способность почвы не беспредельна.

Экспериментальные данные позволяют определить показатели максимальной поглотительной способности почв в отношении металлов. Как правило, количество поглощенных ионов металлов значительно меньше емкости катионного обмена почв. Например, максимальная сорбция Cd, Zn, Pb дерново-подзолистыми почвами Белоруссии колеблется в пределах 16-43% от ЕКО в зависимости от уровня pH, содержания гумуса и вида металла (Головатый, 2002). Поглотительная способность у суглинистых почв выше, чем у супесчаных, а у высоко гумусированных выше, чем у малогумусных. Влияет и вид металла. Максимальное количество элементов, поглощенных почвой специфически, падает в ряду Pb, Cu, Zn, Cd.

Экспериментально можно определить не только количество поглощенных почвами металлов, но и прочность их удерживания почвенными компонентами. Прочность фиксации тяжелых металлов почвами устанавливается на основе их способности экстрагироваться из загрязненных почв различными реагентами. Начиная с середины 1960-х гг. предложено множество схем экстракционного фракционирования соединений металлов из почв, донных отложений. Объединяет их общая идеология. Все схемы фракционирования предполагают прежде всего разделить соединения металлов, удерживаемые почвой, на непрочно и прочно связанные с почвенной матрицей. Они предполагают также среди прочно связанных соединений тяжелых металлов выделить их соединения, предположительно связанные с главными носителями тяжелых металлов: силикатными минералами, оксидами и гидроксидами Fe и Mn, органическими веществами. Среди непрочно связанных соединений металлов предполагается выделение групп соединений металлов, удерживаемых почвенными компонентами за счет различных механизмов (обменные, специфически сорбированные, связанные в комплексы) (Кузнецов, Шимко, 1990; Минкина и др. 2008).

Различаются применяемые схемы фракционирования соединений металлов в загрязненных почвах рекомендуемыми экстрагентами. Все экстрагенты предложены на основании их возможности переводить в раствор предполагаемую группу соединений металлов, однако они не могут обеспечить строгую селективность извлечения названных групп соединений тяжелых металлов. Тем не менее накопившиеся данные о фракционном составе соединений металлов в загрязненных почвах позволяют выявить ряд общих закономерностей.

Для разных ситуаций установлено, что при загрязнении почв в них меняется соотношение прочно и непрочно связанных соединений металлов. Одним из примеров являются показатели состояния Cu, Pb, Zn в загрязненном черноземе обыкновенном Нижнего Дона.

Способность и к прочному, и непрочному удерживанию тяжелых металлов проявили все почвенные компоненты. Ионы тяжелых металлов прочно фиксируются глинистыми минералами, оксидами и гидроксидами Fe и Mn, органическими веществами (Минкина и др., 2008). Важно то, что при увеличении общего содержания металлов в загрязненных почвах в 3-4 раза, соотношение соединений металлов в них изменилось в сторону увеличения доли непрочно связанных форм. В свою очередь и в их составе произошло аналогичное изменение соотношения составляющих их соединений: уменьшилась доля менее подвижных из них (специфически сорбированных) за счет увеличения доли обменных форм металлов и образующих комплексы с органическими веществами.

Наряду с повышением общего содержания тяжелых металлов в загрязненных почвах происходит увеличение относительного содержания более подвижных соединений металлов. Это свидетельствует об ослаблении буферности почв по отношению к металлам, их способности защищать сопредельные среды от загрязнения.

В загрязненных металлами почвах существенно меняются важнейшие микробиологические и химические свойства. Ухудшается состояние микробоценоза. На загрязненных почвах происходит отбор более выносливых видов, а менее устойчивые виды микроорганизмов выбывают. При этом могут появиться новые виды микроорганизмов, обычно отсутствующие на незагрязненных почвах. Следствием этих процессов является снижение биохимической активности почв. Установлено, что в загрязненных металлами почвах снижается нитрифицирующая активность, в результате чего активно развивается грибной мицелий и уменьшается количество сапрофитных бактерий. В загрязненных почвах падает минерализация органического азота. Выявлено влияние загрязнения металлами на ферментативную активность почв: снижение в них уреазной и дегидрогеназной, фосфатазной, аммонифицирующей активности.

Загрязнение металлами влияет на фауну и микрофауну почвы. При повреждении лесного покрова в лесной подстилке падает численность насекомых (клещей, бескрылых насекомых), при этом количество пауков и многоножек может оставаться стабильным. Страдают и почвенные беспозвоночные, часто наблюдается гибель дождевых червей.

Ухудшаются физические свойства почв. Почвы теряют свойственную им структуру, в них уменьшается общая порозность, снижается водопроницаемость.

Изменяются химические свойства почв под влиянием загрязнения. Эти изменения оцениваются с помощью двух групп показателей: биохимических и педохимических (Глазовская, 1976). Называют эти показатели также прямыми и косвенными, специфическими и неспецифическими.

Биоиохимические показатели отражают действие загрязняющих веществ на живые организмы, их прямое специфическое действие. Оно обусловлено влиянием химических веществ на биохимические процессы в растениях, микроорганизмах, позвоночных и беспозвоночных обитателях почвы. Результатом загрязнения является снижение биомассы, урожая растений и его качества, возможно, гибель. Происходит подавление почвенных микроорганизмов, снижение их численности, разнообразия, биологической активности. Биохимическими показателями состояния загрязненных почв служат показатели общего содержания в них загрязняющих веществ (в данном случае тяжелых металлов), показатели содержания подвижных соединений металлов, с которыми непосредственно связано токсическое действие металлов на живые организмы.

Педохимическое (косвенное, неспецифическое) действие загрязняющих веществ (в данном случае металлов) обусловлено их влиянием на почвенно-химические условия, которые, в свою очередь, влияют на условия обитания в почвах живых организмов и на их состояние. Важнейшее значение имеют кислотно-основные, окислительно-восстановительные условия, гумусное состояние почв, ионообменные свойства почв. Например, газообразные выбросы, содержащие оксиды серы и азота, поступая в почву в форме азотной и серной кислот, вызывают снижение pH почв на 1-2 единицы. В меньшей степени способствуют понижению pH почв гидролитически кислые удобрения. Подкисление почв, в свою очередь, ведет к повышению подвижности различных химических элементов в почвах, например, марганца, алюминия. Подкисление почвенного раствора способствует изменению соотношения различных форм химических элементов в пользу увеличения доли более токсичных соединений (например, свободных форм алюминия). Отмечено снижение подвижности фосфора в почве при избыточном количестве в ней цинка. Снижение подвижности соединений азота является результатом нарушения при загрязнении почв их биохимической активности.

Изменение кислотно-основных условий и ферментативной активности сопровождается ухудшением гумусного состояния загрязненных почв, в них отмечено уменьшение содержания гумуса, изменение его фракционного состава. Результатом является изменение ионообменных свойств почв. Например, отмечено, что в черноземах, загрязненных выбросами медного комбината, снизилось содержание обменных форм кальция и магния, изменилась степень насыщенности почв основаниями.

Очевидна условность подобного разделения эффектов влияния загрязняющих веществ на почвы. Хлориды, сульфаты, нитраты оказывают не только педохимическое действие на почвы. Они могут отрицательно влиять на живые организмы и непосредственно, нарушая ход биохимических процессов в них. Например, сульфаты, поступившие в почву в количестве 300 кг/га и больше, могут накапливаться в растениях в количествах, превышающих их допустимый уровень. Загрязнение почв фторидами натрия ведет к поражению растений как под влиянием их токсического воздействия, так и под влиянием вызванной ими сильнощелочной реакции.

Рассмотрим на примере ртути взаимосвязь природных и техногенных соединений металла в различных звеньях биогеоценоза, их совместное влияние на живые организмы, в том числе на здоровье человека.

Ртуть является одним из наиболее опасных металлов, загрязняющих природные среды. Мировой уровень ежегодной добычи ртути составляет около 10 тыс. т. Выделяют три основные группы отраслей промышленности с высокой эмиссией ртути и ее соединений в окружающую среду:

1. Предприятия цветной металлургии, производящие металлическую ртуть из ртутных руд и концентратов, а также путем вторичной переработки различных ртутьсодержащих продуктов;

2. Предприятия химической и электротехнической промышленности, где ртуть используется в качестве одного из элементов производственного цикла (например, при амальгамировании, с которым связано производство ртути, цветных металлов);

3. Предприятия, добывающие и перерабатывающие руды различных металлов (помимо ртутных), в том числе путем термической обработки рудного сырья; предприятия, производящие цемент, флюс для металлургии; производства, сопровождающиеся сжиганием углеводородного топлива (нефть, газ, уголь). В целом это те производства, где ртуть является попутным компонентом, иногда даже в заметных количествах.

Вносят вклад в загрязнение ртутью также предприятия черной металлургии и химико-фармацевтической промышленности, производство тепловой и электрической энергии, производство хлора и каустической соды, приборостроение, извлечение драгоценных металлов из руд (например, предприятия золотодобывающей промышленности) и пр. В сельскохозяйственном производстве применение средств защиты растений от вредителей и болезней ведет к распространению ртутьсодержащих соединений.

В процессе добычи, переработки и использования теряется около половины производимой ртути. Поступают ртутьсодержащие соединения в окружающую среду с газовыми выбросами, сточными водами, твердыми жидкими, пастообразными отходами. Наиболее значительные потери происходят при пирометаллургическом способе ее получения. Ртуть теряется с огарками, отходящими газами, пылью и вентиляционными выбросами. Содержание ртути в углеводородных газах может достигать 1-3 мг/м 3 , в нефти 2-10 -3 %. В атмосфере велика доля летучих форм свободной ртути и метилртути, Hg 0 и (CH 3) 2 Hg.

Обладая продолжительным временем существования (от нескольких месяцев до трех лет), эти соединения могут переноситься на большие расстояния. Только незначительная часть элементарной ртути сорбируется на мелкодисперсных пылеватых частицах и в процессе сухого осаждения достигает земной поверхности. Около 10-20 % ртути переходит в состав водорастворимых соединений и выпадает с осадками, далее поглощается почвенными компонентами, донными отложениями.

С земной поверхности часть ртути вследствие испарения частично вновь поступает в атмосферу, пополняя запас ее летучих соединений.

Особенности круговорота ртути и ее соединений в природе обусловлены такими свойствами ртути, как ее летучесть, устойчивость во внешней среде, растворимость в атмосферных осадках, способность к сорбции почвами и взвесью поверхностных вод, способность к биотическим и абиотическим превращениям (Кузубова и др., 2000). Техногенные поступления ртути нарушают природный цикл металла и создают угрозу для экосистемы.

Среди соединений ртути наибольшей токсичностью отличаются органические производные ртути, прежде всего метилртуть, диметилртуть. Внимание к ртути в окружающей среде проявилось в 1950-е гг. Тогда общую тревогу вызвали массовые отравления людей, проживающих на берегах залива Минамата (Япония), основным занятием которых была ловля рыбы, которая была основным продуктом их питания. Когда стало известно, что причиной отравления явилось загрязнение вод залива промышленными сточными водами с повышенным содержанием ртути, загрязнение экосистемы ртутью привлекло внимание исследователей многих стран.

В природных водах содержание ртути невелико, средняя концентрация в водах зоны гипергенеза составляет 0,1 ∙ 10 -4 мг/л, океана - 3 ∙ 10 -5 мг/л. Ртуть в водах присутствует в одновалентном и двухвалентном состоянии, в восстановительных условиях находится в форме незаряженных частиц. Отличает ее способность к комплексообразованию с различными лигандами. В водах среди соединений ртути доминируют гидроксо-, хлоридные, лимоннокислые, фульватные и другие комплексы. Метильные производные ртути являются наиболее токсичными.

Образование метилртути происходит главным образом в толщах вод и осадков пресных и морских вод. Поставщиком метильных групп для ее образования являются присутствующие в природных водах различные органические вещества и продукты их деструкции. Образование метилртути обеспечивают взаимосвязанные биохимические и фотохимические процессы. Ход процесса зависит от температуры, окислительно-восстановительных и кислотно-основных условий, от состава микроорганизмов и их биологической активности. Интервал оптимальных условий для образования метилртути довольно широк: pH 6-8, температура 20-70 °С. Способствует активизации процесса повышение интенсивности солнечного излучения. Процесс метилирования ртути является обратимым, он сопряжен с процессами деметилирования.

Образование наиболее токсичных соединений ртути отмечается в водах новых искусственных водохранилищ. В них оказываются затопленными массы органического материала, поставляющего в большом количестве водорастворимые органические вещества, которые включаются в процессы микробного метилирования. Одним из продуктов этих процессов являются метилированные формы ртути. Конечным результатом является накопление метилртути в рыбе. Эти закономерности четко проявились в молодых водохранилищах США, Финляндии, Канады. Установлено, что максимальное накопление ртути в рыбе водохранилищ происходит через 5-10 лет после затопления, а возврат к естественным уровням их содержания может наступить не ранее 15-20 лет после затопления.

Метилпроизводные ртути активно усваиваются живыми организмами. Для ртути характерен очень высокий коэффициент накопления. Кумулятивные свойства ртути проявляются в увеличении ее содержания в ряду: фитопланктон-макрофитопланктон-планктоноядные рыбы-хищные рыбы-млекопитающие. Это отличает ртуть от многих других металлов. Период полувыведения ртути из организма оценивается месяцами, годами.

Сочетание высокой эффективности усвоения метилированных соединений ртути живыми организмами и низкой скорости их выведения из организмов ведет к тому, что именно в этой форме ртуть поступает по пищевым цепочкам и максимально накапливается в организме животных.

Наибольшая токсичность метилртути по сравнению с другими ее соединениями обусловлена рядом ее свойств: хорошей растворимостью в липидах, способствующей свободному проникновению в клетку, где она легко взаимодействует с белками. Биологическим следствием этих процессов являются мутагенные, эмбриотоксические, генотоксические и другие опасные изменения в организмах. Общепризнано, что для человека рыба и рыбные продукты являются преобладающими источниками метилртути. Токсическое ее действие на организм человека проявляется в основном в поражении нервной системы, зон коры головного мозга, ответственных за сенсорные, зрительные и слуховые функции.

В России в 1980-е годы были впервые проведены широкие комплексные исследования состояния ртути в биогеоценозе. Это был район бассейна реки Катунь, где планировалось строительство Катунской ГЭС. Тревогу вызывало распространение в регионе горных пород, обогащенных ртутью, в пределах месторождения действовали ртутные рудники. Предупреждением звучали и результаты исследований, выполненных к тому времени в разных странах, свидетельствующие об образовании метилированных производных ртути в водах водохранилищ даже при отсутствии распространения рудных тел в регионе.

Следствием влияния природных и техногенных потоков ртути в районе предполагаемого строительства Катунской ГЭС явились повышенные концентрации ртути в почвах. Отмечена локализация ртутного загрязнения и в донных отложениях верхней части реки Катунь. Было составлено несколько прогнозов экологической обстановки в районе предполагаемого строительства ГЭС и создания водохранилища, но в связи с начавшейся перестройкой в стране работы в этом направлении были приостановлены.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Тяжелые металлы - биохимически активные элементы, входящие в круговорот органических веществ и воздействующие преимущественно на живые организмы. К тяжелым металлам относятся такие элементы, как свинец, медь, цинк, кадмий, кобальт и ряд других.

Миграция тяжёлых металлов в почвах зависит, прежде всего, от щёлочно-кислотных и окислительно-восстановительных условий, определяющих разнообразие почвенно-геохимических обстановок. Важную роль в миграции тяжелых металлов в профиле почв играют геохимические барьеры, в одних случаях усиливающие, в других ослабляющие (в силу способности к консервации) устойчивость почв к загрязнению тяжелыми металлами. На каждом из геохимических барьеров задерживается определённая группа химических элементов, обладающая сходными геохимическими свойствами.

Специфика основных почвообразовательных процессов и тип водного режима обусловливают характер распределения тяжелых металлов в почвах: накопление, консервацию или вынос. Выделены группы почв с накоплением тяжелых металлов в разных частях почвенного профиля: на поверхности, в верхней, в средней части, с двумя максимумами. Кроме того, выделены почвы в зоне , которым присуща концентрация тяжелых металлов за счёт внутрипрофильной криогенной консервации. Особую группу образуют почвы, где в условиях промывного и периодически промывного режимов происходит вынос тяжелых металлов из профиля. Внутрипрофильное распределение тяжелых металлов имеет большое значение для оценки загрязнения почв и прогноза интенсивности аккумуляции в них загрязнителей. Характеристика внутрипрофильного распределения тяжелых металлов дополнена группировкой почв по интенсивности их вовлечения в биологический круговорот. Всего выделено три градации: высокая, умеренная и слабая.

Своеобразна геохимическая обстановка миграции тяжелых металлов в почвах речных пойм, где при повышенной обводнённости значительно возрастает подвижность химических элементов и соединений. Специфика геохимических процессов здесь обусловлена, прежде всего, резко выраженной сезонностью смены окислительно-восстановительных условий. Это связано с особенностями гидрологического режима рек: продолжительностью весенних, наличием или отсутствием осенних паводков, характером меженного периода. Длительность затопления паводковыми водами пойменных террас определяет преобладание либо окислительных (кратковременное затопление поймы), либо окислительно-восстановительных (долгопоёмный режим) условий.

Наибольшим техногенным воздействиям площадного характера подвергаются пахотные почвы. Основной источник загрязнения, с которым в пахотные почвы поступает до 50 % общего количества тяжелых металлов, - фосфорные удобрения. Для определения степени потенциального загрязнения пахотных почв проведен сопряженный анализ свойств почв и свойств загрязнителя: учитывались содержание, состав гумуса и гранулометрический состав почв, а также щелочно-кислотные условия. Данные по концентрации тяжелых металлов в фосфоритах месторождений разного генезиса позволили рассчитать их среднее содержание с учетом приблизительных доз внесения удобрений в пахотные почвы разных районов. Оценка свойств почв соотнесена с величинами агрогенной нагрузки. Совокупная интегральная оценка легла в основу выделения степени потенциального загрязнения почв тяжелыми металлами.

Наиболее опасны по степени загрязнения тяжелыми металлами почвы многогумусовые, глинисто-суглинистые с щелочной реакцией среды: темно-серые лесные, и темно-каштановые - почвы, обладающие высокой способностью. Повышенной опасностью загрязнения почв тяжелыми металлами характеризуются также Московская и Брянская области. обстановка с дерново-подзолистыми не способствует здесь аккумуляции тяжелых металлов, однако в этих областях техногенная нагрузка велика и почвы не успевают «самоочищаться».

Эколого-токсикологическая оценка почв на содержание тяжелых металлов показала, что 1,7 % земель сельскохозяйственного назначения загрязнено веществами I класса опасности (высокоопасными) и 3,8 % - II класса опасности (умеренно опасными). Загрязнение почв с содержанием тяжелых металльов и мышьяка выше установленных норм выявлено в Республике Бурятия, Республике Дагестан, Республике , Республике Мордовия, Республике Тыва, в Красноярском и Приморском краях, в Ивановской, Иркутской, Кемеровской, Костромской, Мурманской, Новгородской, Оренбургской, Сахалинской, Читинской областях.

Локальное загрязнение почв тяжелыми металлами связано, прежде всего, с крупными городами и . Оценка опасности загрязнения почв комплексом тяжелых металлов проводилась по суммарному показателю Zc.

За счет антропогенной деятельности в окружающую среду поступает огромное количество различных химических элементов и их соединений - до 5 т органических и минеральных отходов на каждого человека ежегодно. От половины до двух третей этих поступлений остается в шлаках, золе, образуя локальные аномалии в химическом составе почв и вод.

Предприятия, строения, городское хозяйство, промышленные, бытовые и фекальные отходы населенных пунктов и промышленных районов не только отчуждают почву, но на десятки километров вокруг нарушают нормальную биогеохимию и биологию почвенно-экологических систем. В какой-то степени каждый город или индустриальный центр является причиной возникновения крупных биогеохи- мических аномалий, опасных для человека.

Источником тяжелых металлов являются, главным образом, промышленные выбросы. При этом лесные экосистемы страдают значительно больше, чем почвы сельскохозяйственных угодий и сельскохозяйственные культуры. Особо токсичными являются свинец, кадмий, ртуть, мышьяк и хром.

Тяжелые металлы, как правило, накапливаются в почвенной толще, особенно в верхних гумусовых горизонтах. Период полууда- ления тяжелых металлов из почвы (выщелачивание, эрозия, потребление растениями, дефляция) составляет в зависимости от типа почвы для:

  • цинка - 70-510 лет;
  • кадмия - 13-ПОлет;
  • меди - 310-1500 лет;
  • свинца - 740-5900 лет.

Сложные и иногда необратимые последствия влияния тяжелых металлов можно понять и предвидеть только на основе ландшафт- но-биогеохимического подхода к проблеме токсикантов в биосфере. Особенно влияют на уровни загрязнения и токсико-экологическую ситуацию следующие показатели:

  • биопродуктивность почв и содержание в них гумуса;
  • кислотно-основный характер почв и вод;
  • окислительно-восстановительные условия;
  • концентрация почвенных растворов;
  • поглотительная способность почв;
  • гранулометрический состав почв;
  • тип водного режима.

Роль этих факторов изучена пока недостаточно, хотя именно почвенный покров является конечным приемником большинства техногенных химических веществ, вовлекаемых в биосферу. Почвы являются главным аккумулятором, сорбентом и разрушителем токсикантов.

Значительная часть металлов попадает в почвы от антропогенной деятельности. Рассеивание начинается с момента добычи руды, газа, нефти, угля и других полезных ископаемых. Цепочка рассеивания элементов прослеживается от добывающего рудника, карьера, далее потери происходят при транспортировке сырья на обогатительную фабрику, на самой фабрике рассеивание продолжается по технологической линии обогащения, затем в процессе металлургического передела, изготовления металлов и вплоть до отвалов, промышленных и бытовых свалок.

С выбросами промышленных предприятий в значительных количествах поступает широкий набор элементов, причем ЗВ не всегда связаны с основной продукцией предприятий, а могут входить в состав примесей. Так, вблизи свинцово-плавильного завода приоритетными загрязнителями, кроме свинца и цинка, могут быть кадмий, медь, ртуть, мышьяк, селен, а около предприятий, выплавляющих алюминий, - фтор, мышьяк, бериллий. Значительная часть выбросов предприятий поступает в глобальный круговорот - до 50 % свинца, цинка, меди и до 90 % ртути.

Годовая добыча некоторых металлов превосходит их природную миграцию, особенно значительно для свинца и железа. Очевидно все возрастающее давление техногенных потоков металлов на окружающую среду, в том числе и на почвы.

Близость расположения источника загрязнения сказывается на атмосферном загрязнении почв. Так, два крупных предприятия в Свердловской области - Уральский алюминиевый завод и Красноярская ТЭЦ - оказались источниками техногенного загрязнения атмосферного воздуха с выраженными границами выпадения техногенных металлов с атмосферными осадками.

Опасность загрязнения почв техногенными металлами из аэрозолей воздуха существует для любых видов почв и в любых местах города с той лишь разницей, что почвы, ближе расположенные к источнику техногенеза (металлургический комбинат, ТЭЦ, АЗС или подвижный транспорт) будут больше загрязнены.

Часто интенсивное действие предприятий распространяется на небольшую площадь, что приводит повышению содержания тяжелых металлов, соединений мышьяка, фтора, оксидов серы, серной кислоты, иногда соляной кислоты, цианидов в концентрациях, часто превышающих ПДК (табл. 4.1). Гибнут травяной покров, лесные насаждения, разрушается почвенный покров, развиваются эрозионные процессы. До 30-40 % тяжелых металлов из почвы может поступать в грунтовые воды.

Однако почва также служит мощным геохимическим барьером для потока ЗВ, но лишь до определенного предела. Расчеты показывают, что черноземы способны только в пахотном слое мощностью 0-20 см прочно фиксировать до 40-60 т/га свинца, подзолистые - 2-6 т/га, а почвенные горизонты в целом - до 100 т/га, но при этом в самой почве возникает острая токсикологическая ситуация.

Еше одна особенность почвы - способность активно трансформировать поступающие в нее соединения. В этих реакциях принимают участие минеральные и органические компоненты, возможна трансформация биологическим путем. При этом наиболее распространены процессы перехода водорастворимых соединений тяжелых металлов в труднорастворимые (оксиды, гидроксиды, соли с низким произвеТаблица 4.1. Перечень источников загрязнения и химических элементов, накопление которых возможно в почве в зоне влияния этих источников (Методические указания МУ 2.1.7.730-99 «Гигиеническая оценка качества почвы населенных мест»)

Источники

загрязнения

Тип производства

Коэффициент концентрирования К с

Цветная металлургия

Производство цветных металлов из руд и концентратов

Pb, Zn, Си, Ag

Sn, As, Cd, Sb, Hg, Se, Bi

Вторичная переработка цветных металлов

Pb, Zn, Sn, Си

Производство твердых и тугоплавких цветных металлов

Производство титана

Ag, Zn, Pb, В, Си

Ti, Mn, Mo, Sn, V

Черная металлургия

Производство легированных сталей

Со, Mo, Bi, W, Zn

Железорудное производство

Машиностроительная и металлообрабатывающая про- мышленность

Предприятия с термической обработкой металлов (без литейных цехов)

Ni, Cr, Hg, Sn, Си

Производство свинцовых аккумуляторов

Производство приборов для электронной и электротехнической промышленности

Химическая промышленность

Производство суперфосфата

Редкие земли, Cu, Cr, As, It

Производство пластмасс

Промышленность

стройматериалов

Производство цемента

Полиграфическая

промышленность

Шрифтолитейные заводы, типографии

Твердые бытовые отходы

Pb, Cd, Sn, Си, Ag, Sb, Zn

Осадки канализационных сточных вод

Pb, Cd, V, Ni, Sn, Cr, Си, Zn

дением растворимости ПР) в составе почвенного поглощающего комплекса (ППК): органическое вещество образует с ионами тяжелых металлов комплексные соединения. Взаимодействие ионов металлов с компонентами почвы происходит по типу реакций сорбции, осаждения-растворения, комплексообразования, образования простых солей. Скорость и направление процессов трансформации зависят от pH среды, содержания тонкодисперсных частиц, количества гумуса.

Для экологических последствий загрязнения почв тяжелыми металлами существенное значение приобретают величины концентраций и формы нахождения тяжелых металлов в почвенном растворе. Подвижность тяжелых металлов тесно связана с составом жидкой фазы: низкая растворимость оксидов и гидроксидов тяжелых металлов обычно наблюдается в почвах с нейтральной или щелочной реакцией. Напротив, мобильность тяжелых металлов наиболее высока при сильнокислой реакции почвенного раствора, поэтому токсическое влияние тяжелых металлов в сильнокислых таежно-лесных ландшафтах может быть весьма существенным по сравнению с нейтральными или щелочными почвами. Токсичность элементов для растений и живых организмов непосредственно связана с их подвижностью в почвах. Помимо кислотности на токсичность влияют свойства почв, обусловливающие прочность фиксации поступающих ЗВ; существенное влияние оказывает совместное присутствие различных ионов.

Наибольшую опасность для высших организмов, в том числе и для человека, представляют последствия микробной трансформации неорганических соединений тяжелых металлов в комплексные соединения. Последствиями загрязнения металлами может быть и нарушение почвенных трофических цепей в биогеоценозах. Возможно также изменение целых комплексов, сообществ микроорганизмов и почвенных животных. Тяжелые металлы ингибируют важные микробиологические процессы в почве - трансформацию соединений углерода - так называемое «дыхание» почвы, а также азотфиксацию.

Почва – это поверхность земли, имеющая свойства, которые характеризуют как живую, так и неживую природу.

Почва является индикатором общей . Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами.

К группе тяжелых металлов относятся все с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.

Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью.

Источники загрязнения тяжелыми металлами – это . Существует методика, по которой рассчитывается допустимая норма содержания металлов. При этом учитывается суммарная величина нескольких металлов Zc.

  • допустимая;
  • умеренно опасная;
  • высоко-опасная;
  • чрезвычайно опасная.

Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.

Тяжелые металлы, загрязняющие почву

Существует три класса опасности тяжелых металлов. Всемирная организация здравоохранения самыми опасными считает заражение свинцом, ртутью и кадмием. Но не менее вредна и высокая концентрация остальных элементов.

Ртуть

Загрязнение почвы ртутью происходит с попаданием в нее пестицидов, различных бытовых отходов, например люминесцентных ламп, элементов испорченных измерительных приборов.

По официальным данным годовой выброс ртути составляет более пяти тысяч тонн. Ртуть может поступать в организм человека из загрязненной почвы.

Если это происходит регулярно, могут возникнуть тяжелые расстройства работы многих органов, в том числе страдает и нервная система.

При ненадлежащем лечении возможен летальный исход.

Свинец

Очень опасным для человека и всех живых организмов является свинец.

Он чрезвычайно токсичен. При добыче одной тонны свинца двадцать пять килограммов попадает в окружающую среду. Большое количество свинца поступает в почву с выделением выхлопных газов.

Зона загрязнения почвы вдоль трасс составляет свыше двухсот метров вокруг. Попадая в почву, свинец поглощается растениями, которые употребляют в пищу человек и животные, в том числе и скот, мясо которого также присутствует в нашем меню. От избытка свинца поражается центральная нервная система, головной мозг, печень и почки. Он опасен своим канцерогенным и мутагенным действием.

Кадмий

Огромной опасностью для организма человека является загрязнение почвы кадмием. Попадая в пищу, он вызывает деформацию скелета, остановку роста у детей и сильные боли в спине.

Медь и цинк

Высокая концентрация в почве этих элементов становится причиной того, что замедляется рост и ухудшается плодоношение растений, что приводит в конечном итоге к резкому уменьшению урожайности. У человека происходят изменения в мозге, печени и поджелудочной железе.

Молибден

Избыток молибдена вызывает подагру и поражения нервной системы.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Сурьма

Присутствует в некоторых рудах.

Входит в состав сплавов, используемых в различных производственных сферах.

Ее избыток вызывает тяжелые пищевые расстройства.

Мышьяк

Основным источником загрязнения почвы мышьяком являются вещества, с помощью которых борются с вредителями сельскохозяйственных растений, например гербициды, инсектициды. Мышьяк – это накапливающийся яд, вызывающий хронические . Его соединения провоцируют заболевания нервной системы, мозга, кожных покровов.

Марганец

В почве и растениях наблюдается высокое содержание этого элемента.

При попадании в почву дополнительного количества марганца быстро создается его опасный избыток. На организме человека это сказывается в виде разрушения нервной системы.

Не менее опасен переизбыток и остальных тяжелых элементов.

Из вышесказанного можно сделать вывод, что накопление тяжелых металлов в почве влечет за собой тяжелые последствия для состояния здоровья человека и окружающей среды в целом.

Основные методы борьбы с загрязнением почв тяжелыми металлами

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими. Среди них можно выделить следующие способы:

  • Увеличение кислотности почвы повышает возможность Поэтому внесение органических веществ и глины, известкование помогают в какой-то мере в борьбе с загрязнением.
  • Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным.
  • Проведение детоксикации подземных вод, ее откачивание и очистка.
  • Прогнозирование и устранение миграции растворимой формы тяжелых металлов.
  • В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.