Математика

Инновационной экономике нужны современные инженеры. Как получить высшее инженерное образование? Инженерное образование после

Инновационной экономике нужны современные инженеры. Как получить высшее инженерное образование? Инженерное образование после



История инженерного образования Конец ХХ века: модуляризация, «системы систем», науки о сложности Материализация Ремесленники, ученые- универсалы, цеховая культура Макетирование Создание начертательной геометрии как языка инженера Парижская политехническая школа Борьба «Цеха» и «Школы» Моделирование Выделение профессиональной группы менеджеров из инженеров, контролирующих технологию и производство Развитие инженерных специализаций и прикладной науки Развитие автоматизации, усиление роли и места фундаментальной науки Системная инженерия


Мировые тенденции инженерии Автоматизация традиционных инженерных функций и рутинных интеллектуальных операций Системная инженерия Управление жизненным циклом Экономическая эффективность и снижение издержек Глобализация рынков и гиперконкуренция Сверхсложные и гиперсложные проблемы Современная инженерия Быстрое и интенсивное развитие информационно-коммуникационных технологий Размывание отраслевых границ Общемировые условия:


Проблемы инженерного образования в России Причины: Со стороны промышленности: большое количество предприятий полного цикла («советское наследие»), ориентация на создание региональных (внутрироссийских) промышленных кластеров ориентация на конкуренцию с мировыми лидерами промышленности, а не на глобальную кооперацию значительное влияние ОПК на развитие инженерии Со стороны образования: отсутствие работы со студентами по формированию понимания устройства инженерной деятельности и инсталляции глобального контекста в ней ориентация на российский рынок труда узкая специализация выпускников отсутствие управленческой и кросс-коммуникационной подготовки отсутствие практики международной кооперации на стадии обучения Основная проблема инженерии и инженерного образования России – отсутствие готовности и компетенций встраиваться в глобальные технологические цепочки и систему мирового разделения труда в условиях глобальности систем и технических решений


Проблемы выпускников инженерных вузов в России Незнание иностранного языка Неумение работать в команде Отсутствие уважения к интеллектуальному труду и интеллектуальной собственности Слабая устойчивость к информационной перегрузке Отсутствие понимания потребностей потребителя Отсутствие способности вести эффективную коммуникацию Боязнь брать на себя лидерство в вопросах запуска и инициирования проектов


Основные вызовы Сокращение потребности в кадрах и повышение требований к специалистам: при массовом выпуске инженеров структура подготовки и компетенции специалистов не соответствуют потребностям высокотехнологичной индустрии. Необходимость в постоянном повышении квалификации кадров по всей линейке: современные российские вузы слабо адаптированы под задачу обеспечения непрерывного повышения квалификации специалистов 7


ТРИ ТИПА ВОСТРЕБОВАННЫХ СПЕЦИАЛИСТОВ Квалифицированный техник» – тот, кто способен работать со сложной техникой. Должен знать основы программирования (для работы с оборудованием с ЧПУ), основы электроники, технологии быстрого прототипирования. «Линейный инженер» – тот, кто выполняет рутинную интеллектуальную работу и создает отдельные элементы комплексных систем. Работает со сложными системами, поэтому должен владеть основами системной инженерии, набором нетехнических навыков (softskills: работа в команде, международная коммуникация, английский язык, знание международных стандартов), PLM-системы, пакеты цифрового проектирования. «Инновационный инженер» («инженер-конструктор»)–системный инженер, главная компетенция которого – задумывать и проектировать большие системы междисциплинарного характера (в т.ч. «умные» системы), управлять процессом их создания в полном жизненном цикле. Востребованные компетенции: владение системной инженерией, способность задумать сложную систему, набор нетехнических навыков (softskills: управление проектами, управление командой, работа в гиперконкурентной среде). 8


Структура подготовки инженерных кадров (ВПО) Проблемой является не количество, а структура и качество подготовки инженерных кадров Общее количество инженерных вузов – 392 Контингент студентов, обучающихся на инженерных направлениях подготовки и специальностях – 1,7 млн. (34% от общего числа студентов) Доля выпускников школ, поступивших на инженерные специальности в 2012 г. - 49%. Поддержка инфраструктуры инженерного образования на гг. – 440,2 млрд. рублей 9


Основные компетенции современного инженера Владение современными методами и инструментами разработки систем и реализации интегрированных системных решений Владение методами и инструментами анализа систем (включая моделирование, анализ надежности, анализ рисков, анализ технико- экономических характеристик и т.п.) Владение навыками цифрового проектирования Владение процессным подходом, навыками управления производством Умение управлять изменениями Умение управлять жизненным циклом изделия (в т.ч. экономикой жизненного цикла) Умение налаживать эффективное взаимодействие, работу в команде Владение навыками эффективной коммуникации (в т.ч. на английском языке) 10


Ключевые решения Создание профессиональных и образовательных стандартов, совершенствование образовательных программ и технологий Развитие практикоорентированного обучения на рабочем месте Подготовка инженеров высшего уровня Организация переподготовки кадров за счет средств государственных программ 11


Меры Минобрнауки России по развитию инженерного образования 1.Формирование когорты ведущих вузов из числа вузов, программы развития которых поддержаны из средств федерального бюджета (ФУ, НИУ, ПСР) 2.Совершенствование содержания и структуры профессионального образования (обновленный ФГОС, прикладной бакалавриат) 3.Новый порядок формирования контрольных цифр приема граждан, учитывающий потребности ОПК и отраслей промышленности регионов. 4.Реализация Президентской программы повышения квалификации инженерных кадров на


Образовательные программы для инженеров БАКАЛАВРИАТ Английский язык Базовая инженерная подготовка Развитие личностных качеств Расширенная практика Формирование основ профессиональной культуры и основных деятельностных компетенции (навыки коммуникации, поиска и анализа информации, самообразования, командной работы и т.д.) МАГИСТРАТУРА Углубленная профессиональная подготовка Многопрофильная инженерно- техническая практика Развитие системного мышление Постановка технологий управления жизненным циклом Управленческая подготовка Предпринимательская подготовка Подготовка специалистов (исследователей, системных интеграторов, технологических предпринимателей), способных к решению наиболее сложных профессиональных задач, организации новых областей деятельности, проектной инженерии, исследованиям и управлению ПРОГРАММЫ ПЕРЕПОДГОТОВКИ Управленческая подготовка Предпринимательская подготовка Подготовка инженеров-управленцев и технологических предпринимателей высшего уровня


Это образовательная квалификация присваиваемая выпускнику, закончившему основную образовательную программу высшего образования уровня бакалавриата, обладающего компетенциями по решению технологических задач в различных сферах социально-экономической деятельности, готового приступить к профессиональной деятельности сразу после окончания вуза. Основные отличительные особенности программ прикладного бакалавриата связаны с ориентацией на конкретного работодателя, который: принимает непосредственное участие в проектировании и реализации образовательных программ, организует производственные практики, объем которых увеличен в полтора - два раза в сравнении с программами академического бакалавриата. В программы прикладного бакалавриата встраивается дуальное обучение: предусмотрено присвоение квалификаций рабочего или должности служащего по профилю подготовки; в структуру программ заложены элементы сопряжения с профессиональными программами соответствующего профиля (программы СПО) 14 Перечень мер 1. Правительству Российской Федерации при формировании и корректировке Государственных программ Российской Федерации по развитию промышленности предусматривать разделы, касающиеся кадрового обеспечения соответствующих отраслей экономики, а также его финансового обеспечения. 2. Правительству Российской Федерации с целью повышения эффективности расходования средств федерального бюджета обеспечить учет приоритетов экономической модернизации при распределении бюджетных мест в вузы на инженерные направления подготовки и специальности, предусмотрев повышенные нормативы финансового обеспечения и особые требования к вузам. 3. Правительству Российской Федерации с целью повышения практико- ориентированности инженерного образования обеспечить модернизацию Федеральных государственных образовательных стандартов, предусмотрев совмещение теоретической подготовки с практическим обучением на предприятии. Российскому союзу промышленников и предпринимателей, компаниям с государственным участием, в которых Российская Федерация владеет более 50 % акций, рассмотреть возможность создания образовательных структур, реализующих инновационные образовательные программы высшего образования инженерного профиля. 16



Введение

Система высшего профессионального образования - основа кадрового обеспечения экономического и научного потенциала страны, в связи с чем крайне важно регулярно диагностировать его реальное состояние и соответствие текущим и перспективным потребностям общества. С учетом этого, авторами было проведено международное сравнительное
социологическое исследование состояния и перспектив развития инженерного образования в современном мире. В основу исследования легли результаты опроса экспертов о состоянии высшей технической школы (ВТШ) в России и других странах мирового сообщества, проведенного в период работы 37-го Международного симпозиума по инженерной педагогике (МАДИ, 15-19 сентября 2008 г.).

Проведение симпозиума дало уникальную возможность изучить мнение российской и зарубежной научно-педагогической общественности о состоянии, проблемах и перспективах развития инженерного образования в современном мире. Всего было опрошено 250 респондентов, из них 84 представителя ведущих технических вузов из 22 стран мира: Австрии, Германии, Швейцарии, Нидерландов, Италии, Дании, Венгрии, Болгарии, Финляндии, Турции, Чешской Республики, Словакии, Швеции, Великобритании, Австралии, США, Бразилии, Саудовской Аравии, Эфиопии, Украины, Азербайджана, Казахстана - и 166 участников симпозиума из вузов г. Москвы и регионов России. В ряде случаев для анализа динамики процессов в статье используются результаты исследований, проведенных авторами по аналогичной программе в 2002 году. В основу программы исследования был положен проблемно-точечный подход.

Состояние национальной системы инженерного образования

Хорошо известно, что любое государство хочет иметь такую систему общего и профессионального образования, каким видит свое будущее. Именно данное обстоятельство заставляет как развитые страны, так и страны с переходной экономикой создавать условия для стабильного функционирования и динамичного развития сферы образования. Вместе с тем, реформы - когда они инициируются и проводятся сверху - редко оцениваются положительно. Так, по данным нашего опроса, лишь 21 процент научно-педагогической общественности ВТШ России положительно оценивает результаты реформирования и модернизации сферы ВПО, 37,4 процента - отрицательно и 29,6 процента указывают на то, что заметных изменений не произошло.

Среди опрошенных нами зарубежных представителей высшей технической школы 68 процентов констатировали, в целом, благоприятное состояние национальных систем инженерного образования, 19 процентов - постепенное преодоление последствий ранее имевшего место кризиса, 9,5 процента - стагнацию и застой. Одновременно лишь 23 процента российских участников симпозиума отметили стабильное функционирование системы высшего технического образования в России, 44 ,6 процента - постепенное преодоление последствий кризиса, а 27 процентов указали на стагнацию, застой и даже кризисное состояние отечественного инженерного образования.

Более оптимистично оценивают респонденты состояние своих вузов. Здесь 54 ,3 процента указывают на стабильное функционирование и устойчивое развитие, 29,5 - на преодоление последствий кризиса и лишь 12,6 - на стагнацию, застой или кризисные явления.

Представленная в таблице 1 информация свидетельствует о том, что, по мере улучшения экономического положения в стране, заметно увеличивается и доля преподавателей, считающих, что нынешнее состояние инженерного образования несколько и даже заметно улучшилось, по сравнению с его состоянием в конце 80-х годов XX века.

Результаты масштабных реформ и инноваций в сфере образования видны не сразу, а по прошествии определенного, возможно, весьма длительного периода времени. Так, по мнению опрошенных экспертов, для того чтобы были заметны кардинальные изменения в системе инженерного образования страны, необходим период от пяти до десяти лет (см. табл. 2).

Возможные сценарии дальнейшей трансформации высшей технической школы России

Анализируя распределение данных об оценке возможных сценариев дальнейшей трансформации высшей технической школы России (см. табл. 3), следует отметить, что лишь 33,3 процента представителей вузов Москвы, но 63,2 процента опрошенных из вузов регионов России отмечают в качестве возможного сценария «стабильное функционирование и динамичное развитие отечественной системы инженерного образования»; 53,3 и 26,4 процента, соответственно, - «постепенное преодоление последствий кризиса»; 13,4 процента опрошенных по г. Москве и 10,4 процента по регионам России не исключают и такой сценарий, как «продолжение кризиса» и даже возможное «разрушение системы инженерного образования».

Траектория развития любой, в том числе и профессионально-образовательной системы, во многом зависит от правильного выбора комплекса неотложных первоочередных мер, обеспечивающих начало и интенсивность ее движения (трансформации) в определенном перспективными целями и задачами направлении. Проведенное нами исследование позволяет оценить значимость возможных первоочередных мер, обеспечивающих выполнение ключевой задачи - повышение качества подготовки специалистов в высшей технической школе РФ. Информация, представленная в табл. 4, дает основание сделать вывод о том, что государству для стабилизации положения в высшей (технической) школе, прежде всего, необходимо, как считает около 80 процентов опрошенных, обеспечить стабильное, минимально достаточное финансирование вузов и повысить зарплату преподавателям.

большими затратами живого высококвалифицированного труда, вследствие чего без поэтапного решения проблемы и устойчивой тенденции реального роста оплаты труда преподавателей кардинальные изменения и повышение качества подготовки специалистов в вузах невозможны. Принципиально важно, что все прочие значимые меры по повышению качесттва подготовки специалистов - модернизация материально-технической базы, закрепление молодых преподавателей и др. - реализуются, в основном, на уровне вузов или при их непосредственном участии. Государство и органы управления высшей школой выполняют здесь главным образом ориентирующие, координирующие, стимулирующие и контролирующие функции. В этом плане перенос центра тяжести и содержания модернизации системы высшего профессионального образования на уровень вузов является, по нашему мнению, обоснованным и стратегически правильным решением. Высокий уровень оптимизма при оценке перспектив развития своих вузов зафиксирован и в проведенном нами опросе (см. табл. 5).

Преподаватель высшей школы в современном обществе

Интегрированным показателем статусного положения является место той или иной профессиональной группы в социальной структуре общества и, как следствие этого, престиж профессии преподавателя высшей школы.

Как видно из представленных в таблице 6 данных, в большинстве стран мирового сообщества поддерживается адекватное стратегическим интересам и устойчивому развитию общества стабильное положение преподавателей как представителей среднего и высшего класса.

Длительный период социально-экономического кризиса и неустойчивого функционирования общества, а также не отвечающие стратегическим интересам и национальной безопасности страны последствия этих процессов привели к тому, что около 23 процентов респондентов отнесли преподавателей российской высшей школы к низшему классу. Большинство же опрошенных определили свое место в социальной структуре российского общества на уровне низшего слоя среднего класса - 34 ,9 процента или среднего слоя среднего класса - 36,2. В целом, около 60 процентов российской научно-педагогической общественности оценило свое место в социальной структуре общества ниже и даже существенно ниже, чем их зарубежные коллеги.

Сравнительный анализ данных таблиц 6 и 7 наглядно показывает неразрывную связь положения профессиональной группы в социальной структуре общества и привлекательности профессии преподавателя высшей школы. По оценке 71,4 процента зарубежных респондентов, в большинстве развитых стран и стран с переходной экономикой престиж профессии преподавателя вуза выше среднего уровня. В России же лишь 5,4 процента преподавателей вузов считают рейтинг своей профессии в обществе выше среднего, и 42,8 процента респондентов указали на недопустимо низкий уровень престижа и привлекательности профессии преподавателя высшей школы в российском обществе, особенно среди молодых специалистов-выпускников вузов.

Касаясь своей профессиональной деятельности, 88 процентов российских и 85,7 процента зарубежных экспертов отметили необходимость специальной психолого-педагогической подготовки преподавателей инженерных дисциплин; более 60 процентов опрошенных представителей российских вузов указали на авторитетность в нашей стране звания «Международный преподаватель инженерного вуза»; 72,3 процента считают необходимым создание, по аналогии с ING PAED IGIP, национального общероссийского центра и регистра сертификации преподавателей ВТШ России; а 98 процентов отметили целесообразность регулярного проведения национального симпозиума преподавателей инженерных вузов РФ.

Интеграция российской высшей технической школы с мировым образовательным пространством

Объективность процесса интеграции российской высшей технической школы с мировым профессионально-образовательным пространством не вызывает сомнения. Другое дело - учет в процессе интеграции уровня развития российской и зарубежных систем высшего технического образования. Здесь речь идет о сохранении традиций, авторитета и, одновременно, о возможности взаимно перенять у своих партнеров и коллег все самое лучшее и необходимое. По нашим данным, около 10,2 процента российской научно-педагогической общественности считает, что отечественная система инженерного образования, в целом, превосходит зарубежные, 33,1 процента - отмечают ее превосходство по отдельным позициям и направлениям и 18,7 - указывают на соответствие уровню развития высшей технической школы ведущих стран мира. Вместе с тем, по мнению 2,8 процента опрошенных, российская высшая техническая школа по отдельным позициям и направлениям отстает от зарубежных аналогов.

Интеграция России с мировым сообществом объективно требует сближения ее профессионально-образовательной системы с аналогичными структурами ведущих стран. Но поспешных и непродуманных решений, способных нанести вред российской высшей технической школе, здесь не должно быть. Как показывают усредненные результаты опроса, на полную интеграцию отечественной системы инженерного образования с международной системой понадобится от пяти до десяти лет - время вполне достаточное для взвешенных и рациональных действий.

Естественно, это потребует определенных изменений формального и содержательного характера в высшей (технической) школе страны. Одной из таких инноваций является внедрение в рамках Болонского процесса уровневой системы высшего образования. В настоящее время 4 1,6 процента преподавателей российских инженерных вузов относятся к ней положительно, 2,2 - отрицательно и 16,2 - затруднились дать однозначный ответ. Неоднозначность мнения преподавателей инженерных вузов обусловлена беспокойством за то, как это скажется на качестве и достаточности подготовки выпускников к профессиональной деятельности, как воспримет рынок труда бакалавров техники и технологии. По данным проведенного в 2008 году опроса 2800 студентов 12 технических университетов Москвы и ряда регионов России, лишь 3,7 процента опрошенных считают диплом бакалавра достаточным для профессиональной деятельности в качестве инженера, 66 процентов ориентируются на дипломированного специалиста, а 12,3 - на степень магистра и 17,7 - затруднились дать однозначный ответ.

Процесс трансформации российской высшей школы и все другие инновации в инженерном образовании ни в коем случае не должны снижать качество подготовки специалистов для техносферы, разрушать имеющиеся национальные традиции и достижения в этой области.

Престиж инженерных профессий в современном обществе

Данные табл. 8 показывают некоторое повышение престижа инженерных профессий в российском обществе, по сравнению с 2002 годом. Тем не менее, на относительно высокий престиж этих профессий в нашей стране указали лишь 28,9 процента преподавателей вузов России.

Рост престижа инженерного и научно-технического высокоинтеллектуального труда в российском обществе крайне необходим, но происходить это будет лишь по мере оживления в секторах реального производства и сопутствующего этому повышения привлекательности и оплаты труда данной категории специалистов.

В настоящее время относительно низкий престиж ряда инженерных профессий среди молодежи естественным образом снижает эффективность системы селективного конкурсного отбора среди абитуриентов, поступающих в вузы по техническим специальностям, а, следовательно, и качество подготовки специалистов для техносферы. По данным опроса 2008 года, лишь 11,4 процента респондентов отметили, что в российских вузах полностью обеспечивается требуемый уровень конкурсного отбора талантливой молодежи среди абитуриентов, 56,6 процента указали, что обеспечивается, но частично, и 30,2 процента однозначно подчеркнули вариант ответа «не обеспечивается».

Недостаточно строгий конкурсный отбор абитуриентов при поступлении в вуз приводит из-за высокого уровня сложности профессионально-образовательных программ подготовки специалистов инженерного профиля к увеличению количества студентов, отчисляемых за академическую неуспеваемость, и многочисленным их переводам на другие, более «модные» и престижные специальности.

Состояние и перспективы развития рынка труда специалистов с инженерным образованием

Позитивные тенденции развития экономики России с 2000 года до августа-сентября 2008 года обеспечивали стабильность и даже заметное повышение спроса на выпускников вузов по инженерно-техническим специальностям (табл. 9).

Однако, глобальный экономический кризис привел к крайне негативным процессам на рынке труда практически всех стран мира. Спад промышленного производства явился причиной резкого падения спроса на рынке инженерного труда и роста численности безработных среди специалистов инженерно-технического профиля. Россия уже проходила подобное состояние в 90-е годы XX века. Главный вывод, который необходимо из этого сделать: как бы не столкнуться с проблемой нехватки специалистов требуемого профиля и уровня квалификации по мере выхода из кризиса и оживления экономики. Так, абсолютное большинство опрошенных (72,3 процента) преподавателей российских инженерных вузов прогнозируют в перспективе существенное увеличение спроса на специалистов в области техники и технологии, 19,9 процента - ориентируются на незначительное повышение спроса и лишь 7,8 процента указали на стабильность или некоторое снижение спроса на инженерные кадры.

Еще более оптимистично оценивают эксперты перспективы изменения потребностей в специалистах с инженерным образованием - выпускниках своих вузов. Здесь 90 процентов опрошенных указывают на повышение спроса, 3,6 процента - на прежний уровень спроса на их выпускников и лишь,2 процента - на возможное снижение спроса.

В силу структуры спроса на российском рынке труда, уровня зарплаты специалистов и целого ряда других причин более половины выпускников технических (и не только) вузов страны устраиваются работать не по специальности. В условиях рыночной экономики явление перелива труда и капитала наблюдается весьма в значительном объёме. Например, в развитых странах мира также, в среднем, лишь 40-50 процентов выпускников технических вузов сразу устраиваются работать по специальности.

Неопределенность и неустойчивость российского рынка труда является весомым аргументом и против подготовки узкопрофильных специалистов, так как это резко сокращает или затрудняет их профессиональную мобильность. Практика показывает, что при любой реорганизации структура подготовки (инженерных) кадров в высшей школе в редких случаях полностью соответствует текущим и перспективным потребностям экономики. В основном, здесь наблюдается частичное соответствие (66,3 процента) и явно недопустимо несоответствие структуры подготовки инженерных кадров текущим и особенно перспективным потребностям экономики, наличие которого отмечают 16-18 процентов российских преподавателей (см. табл. 10).

Проблему трудоустройства молодых специалистов в значительной степени могут смягчить центры по содействию занятости студентов и выпускников при вузах. Как отмечают 66,3 процента опрошенных респондентов, заслуживает внимания и необходимость создания в России системы центров и национального регистра сертификации специалистов инженерного профиля.

А вот как оценили наши респонденты - и отечественные, и зарубежные - слабые места национальных систем подготовки специалистов-выпускников технических вузов (см. табл. 11)

Данные диспропорции, на наш взгляд, могут быть устранены лишь на основе реальной интеграции образования, науки и производства, модернизации на этой основе профессиональных образовательных программ в области техники и технологии. Ориентиром решения имеющихся здесь проблем служат текущие и, в большей степени, перспективные потребности рынка интеллектуального труда. Как показывают результаты исследования (см. табл. 12), и российским, и зарубежным вузам, в основном, удается обеспечить соответствие качества подготовки специалистов с инженерным образованием сегодняшним требованиям рынка интеллектуального труда.

Оценивая динамику изменения российских стандартов и программ инженерного образования, 53,6 процента опрошенных отметили тенденцию к их усложнению, 12,7 процента указали на то, что сложность стандартов и программ не изменяется, а 26,5 процента - на упрощение основных образовательных программ ВПО в области техники и технологии.

В. КАМЕНСКИЙ.

О проблемах высшей школы и путях реформирования инженерного образования в России журнал рассказывал неоднократно (см. "Наука и жизнь" № 9, 1995 г., №№ 1, 7, 11, 1997 г., № , 1999 г.). Сегодня, когда упавший было спрос на инженеров вновь возрастает и престиж инженерных профессий возрождается, разговор на эту тему особенно актуален. Что надо сделать для того, чтобы сохранить традиционно высокий уровень инженерного образования? Должна ли претерпеть изменения система подготовки специалистов в технических вузах? Сегодня свой взгляд на проблему высказывает инженер Валентин Валентинович Каменский. Он окончил МВТУ им. Н. Э. Баумана, работал конструктором, исследователем, разработчиком, преподавал теоретическую механику во втузе при ЗИЛе и много лет частным образом занимался подготовкой студентов нескольких московских вузов по общетехническим и инженерным дисциплинам. Приобретя немалый практический опыт и получив полное представление о специфике преподавания во многих технических вузах, автор статьи разработал свою концепцию инженерного образования.

Кто прошел стезю так называемого неформального преподавания, а проще говоря, частных занятий со студентами по разным вузовским дисциплинам, знает, что такое постоянная "война" с бестолковыми методичками, приспосабливание к кажущимся неприемлемыми требованиям иных преподавателей, сидение по ночам над неожиданными заковыристыми проектами, вдалбливание в неподготовленные головы учеников простых истин.

Многолетняя работа на этом поприще позволяет мне утверждать, что претендовать на звание инженера, скорее всего, будет тот, кто с детства увлекался техническими поделками, что-то паял, мастерил и строил. А тот, кто с утра до вечера решал задачки и разгадывал головоломки, вероятнее всего, станет математиком. Но если поле деятельности математика или, скажем, юриста может быть определено достаточно четкими рамками, то сфера деятельности инженера, а следовательно, и границы его вузовской подготовки более расплывчаты и противоречивы. Конечно, они изменяются и во многом зависят от уровня технического прогресса, меняются и воззрения на профессию инженера. И все же тип все умеющего энергичного технаря, способного быстро начертить схему или конструкцию какого-либо устройства, знающего, где и как раздобыть нужные узлы и детали, чем и что заменить при необходимости, и умеющего быстро реализовать задуманное, как мне представляется, вполне отвечает психологическому облику современного инженера, способного к комплексному усвоению информации для решения конкретной задачи.

В универсализме профессии инженера заложена и некая противоречивость, ведь как говорил Козьма Прутков: "Нельзя объять необъятное!". Сегодня инженеру в чем-то не хватает глубины проникновения в проблему, в чем-то недостает основательности, вполне возможно, что он не всегда учитывает эстетические веяния своего времени. Но инженер именно таков, и выстраивать систему его обучения в высшей школе необходимо, руководствуясь не абстрактной моделью "ботаника", будь то математик или химик, а совсем иными принципами: помогать ему реализовывать "предрасположенность" и тягу к инженерному делу, холить и лелеять его способности к комплексному мышлению.

Отвечает ли современная вузовская система обучения таким представлениям об инженере? Скорее всего, нет. Состояние инженерного образования в России сегодня можно оценить как хаотичное, и, наверное, это многим очевидно. Его хаотичность выражается прежде всего в разноречивости методик обучения общеинженерным дисциплинам. Чтобы не быть голословным, достаточно проиллюстрировать это утверждение всего одним примером из курсового проекта по "Деталям машин", который входит в программу подготовки не менее 75 процентов будущих инженеров. Перед вычерчиванием редуктора студенты выполняют большой объем расчетов, в частности, в самом начале работы над проектом определяют так называемые межосевые расстояния. И хотя смысл расчетов, базирующихся на формуле Герца, всегда один и тот же, в каждом проекте дается своя формула межосевого расстояния, непохожая на другие. При этом чаще всего используются многочисленные эмпирические коэффициенты, смысл и значение которых в большинстве случаев студентам непонятны. В результате расчеты теряют логику и часто воспринимаются как непреодолимые.

Другой недостаток - несбалансированность обучения будущих инженеров, причем не только по объему материала и количеству времени, отводимому для изучения тех или иных дисциплин. Это как раз понятно. Менее очевидна другая сторона несбалансированности учебного процесса - отсутствие преемственности в изучении дисциплин.

Пример опять-таки из проекта по "Деталям машин" и примыкающих к нему по смыслу двух других проектов: по "Теории механизмов и машин" (ТММ) и "Технологии машиностроения". Удивительно, но факт: при расчете редукторов в проектах по "Деталям машин" не используется ничего из тех знаний, которыми "начиняли" студентов в курсе ТММ. А между тем ТММ - сложнейший теоретический проект, недаром студенты называют его "Тут моя могила". Выполняемый всегда с огромным напряжением, проект по ТММ оказывается в конце концов невостребованным. Из этого курса могли пригодиться хотя бы знания по зубчатым зацеплениям, но в действительности и этого нет. В проекте по "Деталям машин", например, расчеты зубчатых зацеплений основаны на самых простых представлениях, не требующих знаний, приобретаемых в "Теории механизмов и машин". А в курсе "Технология машиностроения" характеристики зубчатого зацепления представлены вообще совершенно иными параметрами, плохо стыкующимися с ТММ и " Деталями машин".

И хотя все эти "мелочи" выглядят незаметными в общем потоке "лишних" знаний, получаемых студентами в процессе учебы, подобная несбалансированность приводит к тому, что у них формируется и закрепляется представление о ненужности знаний. Такой устойчивый психологический комплекс выработался в наибольшей мере по отношению к курсу ТММ.

Безусловно, устранение разноречивости и несбалансированности обучения - процесс кропотливый и достаточно долгий. Он протекает трудно еще и потому, что в отличие от средних школ, где корректировкой учебного процесса занимаются управления народного образования, на уровне высшей школы эта работа практически не ведется.

Мне представляется, что приоритетными в инженерном образовании должны быть три общетехнических проекта: теоретический, конструкторский и технологический. Для большинства инженерных специальностей в этот комплекс входят "Теория механизмов и машин", "Детали машин" и "Технология машиностроения". Все дисциплины, изучаемые раньше, должны хорошо состыковываться с каждым из трех проектов и работать на них.

Первая часть комплекса - теоретическая: проект по "Теории механизмов и машин" (ТММ), который дает толчок к освоению двух других проектов. В нем должны быть представлены не только теоретическая механика (как сегодня), но и информатика, электротехника, электроника, и, безусловно, схемы различных механизмов и машин. Степень участия в этом проекте той или другой общетехнической дисциплины будет зависеть от наработанного опыта и профиля технического вуза. Основная же цель теоретического общетехнического проекта по ТММ - соединить в один блок несколько дисциплин, которые до сих пор изучаются автономно. Только в этом случае ТММ можно реально "оживить". И хотя такому проекту угрожает некоторая поверхностность, при хорошей согласованности программ составляющих его предметов ТММ может стать со временем реальным и эффективным звеном инженерного образования.

Вторая часть комплекса - конструкторская: проект по "Деталям машин". Сейчас по результатам его выполнения проверяют прежде всего умение студента чертить и конструировать, а также знание таких дисциплин, как "Основы взаимозаменяемости", "ГОСТы", "Расчеты деталей машин", "Материаловедение" и "Технология машиностроения". Как показывает практика, подавляющее большинство студентов приступают к проекту по "Деталям машин" неподготовленными, не получив достаточного багажа знаний по уже изученным дисциплинам. Именно поэтому проект становится для студентов серьезным испытанием, и почти всегда они (не все, конечно), мягко говоря, стремятся получить помощь "на стороне".

Учитывая важность курса "Детали машин", методически было бы правильно в помощь основному проекту дать студентам для тренировки еще один или несколько промежуточных проектов, например под названием "Конструирование узлов", в котором изучались бы более простые изделия с количеством деталей, скажем, не более десятка. В зависимости от специализации такой вспомогательный курс, охватывающий не только конструирование, но и технологии изготовления достаточно простых механизмов, мог бы повторяться (для изучения узлов и деталей другого типа) с усилением, например, технологической стороны проекта, причем все ранее изученные дисциплины должны быть хорошо с ним состыкованы.

Нельзя не обратить внимание и на такую важную дисциплину, как "Основы взаимозаменяемости", которая во многих вузах излишне теоретизирована и часто оторвана от реального инженерного образования. На мой взгляд, "Основы взаимозаменяемости" следует преподавать вместе с курсами по конструированию и основам технологии.

Третья составляющая комплекса - технологическая: проект по "Технологии машиностроения". Эта дисциплина в значительно меньшей степени связана с умозрительными моделями, расчетами и схемами, чем с практикой производства. В курсе "Технология машиностроения" должны основательно изучаться станки, инструменты, оснастка, материалы. Облегчить изучение действительно очень объемного курса также могут промежуточные "тренировочные" проекты, в которых технология изготовления узла или детали постигается вместе с конструированием.

Сегодня важнейший инженерный проект по "Технологии машиностроения" чаще всего выполняется на довольно низком уровне. Это связано с тем, что он в целом не имеет устойчивой методической базы и больше других зависит от квалификации и "вкусов" преподавателя. На мой взгляд, в инженерных науках почему-то всегда приоритетными оказываются теоретические дисциплины, а не практические, к которым относится и технология машиностроения.

Подведем итог. Основой инженерного образования должны стать теоретический проект на базе существенно реформированного курса "Теория механизмов и машин", а также конструкторский и технологический проекты по курсам "Детали машин" и "Технология машиностроения". Усвоение навыков выполнения всех трех проектов может дать будущим творцам новых машин и технологий необходимую профессиональную квалификацию. Общетехнические инженерные проекты должны стать тем основным фундаментом, на который могут быть положены и другие "кирпичики" инженерного образования. Это такие дисциплины, как вычислительная математика, теоретическая механика, сопромат и т. д., которые, к сожалению, преподаются в отрыве от общеинженерных дисциплин. С другой стороны, тематика общетехнических проектов должна формироваться с учетом специальных проектов, выполняемых на старших курсах.

Если концепцию "Три проекта" удастся реализовать, то профессиональная подготовка инженеров на стадии обучения в вузе достигнет, как мне представляется, такого уровня, что им не придется "доучиваться" на производстве, а значит, удастся повысить уровень российского инженерного образования, которое традиционно считается одним из лучших в мире.

Публикации по теме в журнале "Наука и жизнь":

Григолюк Э., акад. "Разница в научной подготовке русских и американских инженеров была в то время ошеломляющей". - 1997, № 7.

Капица С., докт. физ.-мат. наук. Система Физтеха есть и будет. - 1997, № 1.

Майор Ф., генеральный директор ЮНЕСКО. - 1999, № 8.

Состояние российской системы инженерного образования в настоящий момент оценить сложно, так как имеются диаметрально противоположные точки зрения на этот вопрос. Для того, чтобы лучше понять ситуацию, сложившуюся в инженерном образовании в России, стоит рассмотреть ее как следствие предшествующего исторического развития.

Инженерное образование в России имеет трехвековую историю. Первое учебное заведение было открыто в 1701 году по инициативе Петра I - Школа математических и навигацких наук. Все последующие правители, возглавлявшие Российскую империю вплоть до революции 1917 года, уделяли большое внимание развитию инженерного образования. До 60-х годов XIX века Российская империя не уступала ни одной стране мира ни по числу, ни по качеству подготовки инженеров. В этот временной период, пожалуй, только во Франции инженерное образование пользовалось таким же престижем, как в России. Во время царствования Александра II по качеству инженерного образования Российскую империю обогнала Германия. Однако, в это время были открыты такие учебные заведения как Рижский политехнический институт и Московское техническое училище (МГТУ им. Н.Э. Баумана) (Сапрыкин Д.Л., Вавилова С.И., 2012).

Начиная с середины 90-х годов XIX века, государство стало вести целенаправленную политику в области повышения качества инженерного образования. Были значительно увеличены инвестиции в эту сферу, что позволило открыть ряд учебных заведений. Также правительство ставило перед учеными и инженерами новые задачи в разных областях. Помимо государства запросы стали появляться со стороны частной промышленности. Таким образом, к началу Первой мировой войны российская система образования по всем параметрам значительно превосходила германскую (Сапрыкин Д.Л., Вавилова С.И., 2012).

Благодаря государственной политике, в первые два десятилетия XX века в России был сделан прорыв в области инженерного образования. Тогда была сформирована концепция физико-технического образования, активно действовали центры по сближению фундаментальной науки и инженерной практики. Важно отметить, что все преподаватели технических вузов того времени помимо чисто теоретической деятельности, вели практические работы как для государственных нужд, так и для промышленности (Сапрыкин Д.Л., Вавилова С.И., 2012).

Анализ системы дореволюционного инженерного образования позволяет выделить ряд ключевых особенностей, которые в настоящее время сохранены только в ведущих вузах Российской Федерации. Это такие особенности, как:

  • - развитие, наряду с научными и техническими знаниями, гуманитарной культуры;
  • - соединение науки и практики;
  • - формирование способности творческого развития своей сферы деятельности;
  • - ориентация на практическую реализацию законченных проектов;
  • - подготовка к профессиональному выполнению функций руководителя предприятия, к роли государственного и военного служащего.

Гуманитаризация технической школы была одной из основных идей того времени. Наряду с гуманитаризацией можно выделить сочетание науки и практики. Это соединение было особенностью не только российской, но и немецкой и французской школ - основных конкурентов Российской империи в борьбе за лидерство в инженерном образовании. Основываясь на качественном математическом и естественнонаучном образовании, деятельность инженера соединяла в себе творческую научную работу и практику. В противопоставление можно привести Английскую инженерную школу, которая готовила в основном мастеров и техников, отталкиваясь только от практики. Стоит отметить, что долгое время мастер и техник шли впереди инженера-исследователя, но со временем ситуация изменилась, и наука стала играть большую роль (А. И. Боровков, С. Ф. Бурдаков и др., 2012).

Таким образом, инженер с высшим образованием должен быть одновременно ученым, техническим специалистом, менеджером и руководителем. Примеры выдающихся инженеров - П.Л. Капица, Н.Е. Жуковский, А.Ф. Иоффе и другие.

Формирование перечисленных компетенций у инженера происходило не только в рамках вузовского образования. На тот период в Российской империи были очень сильны семейные традиции образования, формировались семейные династии инженеров.

Реструктуризация экономики в XX веке сказалась на структуре инженерного образования. Во-первых, образование стало массовым. Во-вторых, сосредоточение технологий в государственных предприятиях привело к тому, что такие качества инженера, как менеджерская и экономическая, стали не нужны. В-третьих, государство разделило науку, промышленность и образование. Все эти факты отрицательно сказались на качестве инженерного образования. Но, стоит отметить, что есть университеты, которые смогли сохранить традиции классической концепции инженерного образования до настоящего времени. Один из таких университетов - МГТУ им. Н.Э. Баумана.

Особенно большие масштабы массовизация высшего образования приняла в 90-е годы XX века. Увеличению количества учреждений высшего профессионального образования способствовал закон об образовании 1993 года, который закрепил автономность вузов и легитимировал появление мест с оплатой обучения, частных и негосударственных вузов (рисунок 1) (Фрумин, Карной, 2014).

Рисунок 1. Число высших учебных заведений

Понятно, что такое увеличение возможностей учиться привело не только к падению конкурсов, но и к тому, что те выпускники школ, которые по уровню своей академической подготовки еще пару десятилетий назад не могли и рассчитывать на обучение в вузах, теперь получили возможность там учиться. К примеру, в 1991 году на 1 курс вузов было зачислено 583,9 тыс. студентов, из них 360,8 тыс. на очное отделение. В 2013 году эти цифры значительно выше -1,25 млн и 665 тыс. студентов соответственно (Источник: Росстат, 2014. Российский статистический ежегодник). Одновременно происходит падение престижа профессии инженера, поэтому на инженерные специальности российских вузов поступают абитуриенты с низкими баллами ЕГЭ (Стенографический отчёт о заседании Совета при Президенте по науке и образованию, 2014).

Рассмотрим, для примера, данные о качестве приема на инженерные специальности «Электротехника» и «Компьютерные науки» в 2014 г. (по базе Министерства образования и науки 2014 г.). По специальности «Электротехника» в 2014 году такую подготовку в России вели 155 вузов, из них - 5 частных и 150 государственных. По направлению подготовки «Компьютерные науки» подготовку студентов осуществляли 283 вуза, из них, соответственно, 55 частных и 228 государственных. На рисунке 2 приведены сведения о качестве подготовки по профильным экзаменам - математике и физике - студентов, зачисленных в российские вузы по данным специальностям.

Рисунок 2. Качество приема по направлениям «Электротехника» (количество поступивших 15272 человека) и

«Компьютерные науки» (количество поступивших 17 655 человек)

Анализ данных, представленных на рисунке 3, показывает, что средний балл при поступлении в вузы и по математике, и по физике меньше ТБ2 , которые в 2014 году были равны 63 и 62 балла, соответственно. При этом, заметна большая разница между минимальным и максимальным средними баллами, которые показали абитуриенты при поступлении в различные вузы. Этот факт говорит о существующей дифференциации вузов по уровню подготовки поступающих.

И тем не менее, падение подготовки абитуриентов подтверждается не только результатами ЕГЭ, но и мнением преподавателей ведущих вузов. И.Б. Федоров - президент ассоциации технических вузов России, в своем интервью журналу «Аккредитация в образовании» в 2011 году заявил, что «качество школьного образования продолжает снижаться. С каждым годом ухудшается математическая подготовка, а это самым тесным образом связано с качеством подготовки инженеров».

Опрос работодателей, организованный в 2013 году показал, что качество подготовки выпускников технических вузов оценивается в 3,7 балла по 5-балльной шкале, примерно 40% нуждаются в переподготовке (Совет при Президенте по науке и образованию, 2014). В литературе отмечается, что в России не хватает инженеров, способных выполнять конкретные практические задачи (Ю.П. Похолков, 2012). По результатам исследования, организованного ассоциацией инженерного образования в России, более половины экспертов в области высшего технического образования, принимавших участие в данном исследовании, оценивают состояние инженерного дела в России как критическое или находящееся в глубоком системном кризисе (соответственно 28% и 30%) (Ю.П. Похолков, 2012).

Однако, ряд экспертов убеждены в том, что обвинения в низком качестве инженерного образования в России является бездоказательными, по их мнению российские университеты находятся на уровне ведущих инженерных центров мира. Стоит отметить, что большинство экспертов, отмечающих высокое качество инженерных школ в России, работают в ведущих вузах, сохранивших классическую концепцию инженерного образования - это А.А. Александров, Н.И. Сидняев, А.Н. Морозов, С.Р. Борисов и другие.

При этом, даже те эксперты, которые свидетельствуют о высоком качестве инженерного образования в России, говорят о том, что политика государства по отношению к инженерному образованию претерпела значительные изменения. Наряду с ростом количества вузов в 90-е годы значительно снизилось их финансирование. Следствием этого стало то, что Россию обогнали такие страны как США, Япония, многие страны Западной Европы, Южная Корея, Тайвань. Такая политика снижает шансы России на подъем в послекризисный период XXI века (Г.Б. Евгеньев, 2001).

Таким образом, анализ литературы и результатов ЕГЭ показывает, что в России в настоящее время ярко выражена дифференциация вузов по уровню технической подготовки. В стране есть вузы, сохранившие лучшие образовательные традиции, что позволяет им находиться на уровне ведущих мировых университетов. Также есть вузы, на деятельности которых значительно сказалась реструктуризация экономики, что повлекло за собой изменение в структуре вуза, методиках преподавания и, как следствие, падение уровня подготовки их выпускников.

Чтобы понять, что позволяет определенным инженерным вузам занимать лидирующие позиции, следует проанализировать их образовательные стратегии. В качестве ведущих вузов на основании мониторинга эффективности деятельности вузов (http://indicators.miccedu.ru/) можно выделить Балтийский федеральный университет им. Иммануила Канта (Российский государственный университет им. Иммануила Канта), Дальневосточный федеральный университет (Дальневосточный государственный университет), Московский физико-технический институт (государственный университет), Казанский государственный технический университет им. А. Н.Туполева, Казанский государственный технологический университет, Московский государственный институт электронной техники, Московский государственный технический университет им. Н.Э. Баумана и другие. Все перечисленные университеты сохранили в себе традиции классической инженерной школы. Среди перечисленных университетов выделяется МГТУ им. Баумана. Рассмотрим на его примере, как традиции русской инженерной школы воплощены в жизнь в современное время.